大电流密度表面涂覆电爆引信的实验与仿真

J. Stephens, A. Neuber, J. Dickens, M. Kristiansen
{"title":"大电流密度表面涂覆电爆引信的实验与仿真","authors":"J. Stephens, A. Neuber, J. Dickens, M. Kristiansen","doi":"10.1109/IPMHVC.2012.6518739","DOIUrl":null,"url":null,"abstract":"The primary objective of the research discussed in this paper is to develop a compact electro-explosive fuse (EEF) for a flux compression generator (FCG) power conditioning system, capable of rapidly obtaining and maintaining high impedance. It was observed that significant gains in EEF performance are introduced with the application of an insulating coating to the surface of the EEF wire. A 2 kA small scale test bed has been designed to provide a single wire EEF with similar current density (~107 A/cm2), voltage gradient (~7 kV/cm), and timescale (~8 μs) as to what is seen by and EEF utilized in a HPM generating FCG system. With the small scale test bed EEF performance data was rapidly obtained at a significantly lower cost than equivalent full scale FCG experiments. A one-dimensional finite difference model coupled with the Los Alamos National Laboratory SESAME Equation-of-State database was utilized to simulate the resistive behavior of the single wire EEFs. Further, a large scale test bed, designed to provide a similar current action as to what is provided by a FCG is used to test 18 wire EEF arrays at the 40 kA level.","PeriodicalId":228441,"journal":{"name":"2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimentation and simulation of high current density surface coated electro-explosive fuses\",\"authors\":\"J. Stephens, A. Neuber, J. Dickens, M. Kristiansen\",\"doi\":\"10.1109/IPMHVC.2012.6518739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary objective of the research discussed in this paper is to develop a compact electro-explosive fuse (EEF) for a flux compression generator (FCG) power conditioning system, capable of rapidly obtaining and maintaining high impedance. It was observed that significant gains in EEF performance are introduced with the application of an insulating coating to the surface of the EEF wire. A 2 kA small scale test bed has been designed to provide a single wire EEF with similar current density (~107 A/cm2), voltage gradient (~7 kV/cm), and timescale (~8 μs) as to what is seen by and EEF utilized in a HPM generating FCG system. With the small scale test bed EEF performance data was rapidly obtained at a significantly lower cost than equivalent full scale FCG experiments. A one-dimensional finite difference model coupled with the Los Alamos National Laboratory SESAME Equation-of-State database was utilized to simulate the resistive behavior of the single wire EEFs. Further, a large scale test bed, designed to provide a similar current action as to what is provided by a FCG is used to test 18 wire EEF arrays at the 40 kA level.\",\"PeriodicalId\":228441,\"journal\":{\"name\":\"2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPMHVC.2012.6518739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPMHVC.2012.6518739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究的主要目标是研制一种能够快速获得并保持高阻抗的紧凑型电爆引信(EEF),用于磁通压缩发生器(FCG)电力调节系统。结果表明,在电火花线材表面涂上绝缘涂层后,电火花线材的电火花性能得到了显著提高。设计了一个2 kA的小型试验平台,以提供与HPM发电FCG系统中使用的EEF相似的电流密度(~107 A/cm2)、电压梯度(~7 kV/cm)和时间标度(~8 μs)的单线EEF。与等效的全尺寸FCG实验相比,在小型试验台上快速获得了EEF性能数据,且成本显著降低。利用一维有限差分模型和美国洛斯阿拉莫斯国家实验室SESAME状态方程数据库,模拟了单线电火花的电阻行为。此外,一个大型测试平台,旨在提供类似于FCG提供的电流作用,用于测试40 kA电平的18线EEF阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimentation and simulation of high current density surface coated electro-explosive fuses
The primary objective of the research discussed in this paper is to develop a compact electro-explosive fuse (EEF) for a flux compression generator (FCG) power conditioning system, capable of rapidly obtaining and maintaining high impedance. It was observed that significant gains in EEF performance are introduced with the application of an insulating coating to the surface of the EEF wire. A 2 kA small scale test bed has been designed to provide a single wire EEF with similar current density (~107 A/cm2), voltage gradient (~7 kV/cm), and timescale (~8 μs) as to what is seen by and EEF utilized in a HPM generating FCG system. With the small scale test bed EEF performance data was rapidly obtained at a significantly lower cost than equivalent full scale FCG experiments. A one-dimensional finite difference model coupled with the Los Alamos National Laboratory SESAME Equation-of-State database was utilized to simulate the resistive behavior of the single wire EEFs. Further, a large scale test bed, designed to provide a similar current action as to what is provided by a FCG is used to test 18 wire EEF arrays at the 40 kA level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信