面向低资源声学场景分类的调幅特征优化

Semih Agcaer, A. Schlesinger, Falk-Martin Hoffmann, Rainer Martin
{"title":"面向低资源声学场景分类的调幅特征优化","authors":"Semih Agcaer, A. Schlesinger, Falk-Martin Hoffmann, Rainer Martin","doi":"10.1109/EUSIPCO.2015.7362846","DOIUrl":null,"url":null,"abstract":"We developed a new feature extraction algorithm based on the Amplitude Modulation Spectrum (AMS), which mainly consists of two filter bank stages composed of low-order recursive filters. The passband range of each filter was optimized by using the Covariance Matrix Adaptation - Evolution Strategy (CMA-ES). The classification task was accomplished by a Linear Discriminant Analysis (LDA) classifier. To evaluate the performance of the proposed acoustic scene classifier based on AMS features, we tested it with the publicly available dataset provided by the IEEE AASP Challenge 2013. Using only 9 optimized AMS features, we achieved 85 % classification accuracy, outperforming the best previously available approaches by 10 %.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Optimization of amplitude modulation features for low-resource acoustic scene classification\",\"authors\":\"Semih Agcaer, A. Schlesinger, Falk-Martin Hoffmann, Rainer Martin\",\"doi\":\"10.1109/EUSIPCO.2015.7362846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a new feature extraction algorithm based on the Amplitude Modulation Spectrum (AMS), which mainly consists of two filter bank stages composed of low-order recursive filters. The passband range of each filter was optimized by using the Covariance Matrix Adaptation - Evolution Strategy (CMA-ES). The classification task was accomplished by a Linear Discriminant Analysis (LDA) classifier. To evaluate the performance of the proposed acoustic scene classifier based on AMS features, we tested it with the publicly available dataset provided by the IEEE AASP Challenge 2013. Using only 9 optimized AMS features, we achieved 85 % classification accuracy, outperforming the best previously available approaches by 10 %.\",\"PeriodicalId\":401040,\"journal\":{\"name\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2015.7362846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种新的基于调幅谱(AMS)的特征提取算法,该算法主要由两个低阶递归滤波器组成的滤波器组级组成。采用协方差矩阵自适应进化策略(CMA-ES)对各滤波器的通带范围进行优化。分类任务由线性判别分析(LDA)分类器完成。为了评估基于AMS特征的声场景分类器的性能,我们使用IEEE AASP挑战赛2013提供的公开数据集对其进行了测试。仅使用9个优化的AMS特征,我们就实现了85%的分类准确率,比以前可用的最佳方法高出10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of amplitude modulation features for low-resource acoustic scene classification
We developed a new feature extraction algorithm based on the Amplitude Modulation Spectrum (AMS), which mainly consists of two filter bank stages composed of low-order recursive filters. The passband range of each filter was optimized by using the Covariance Matrix Adaptation - Evolution Strategy (CMA-ES). The classification task was accomplished by a Linear Discriminant Analysis (LDA) classifier. To evaluate the performance of the proposed acoustic scene classifier based on AMS features, we tested it with the publicly available dataset provided by the IEEE AASP Challenge 2013. Using only 9 optimized AMS features, we achieved 85 % classification accuracy, outperforming the best previously available approaches by 10 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信