随机系数潜在效用模型的识别

R. Allen, John Rehbeck
{"title":"随机系数潜在效用模型的识别","authors":"R. Allen, John Rehbeck","doi":"10.2139/ssrn.3545696","DOIUrl":null,"url":null,"abstract":"This paper provides nonparametric identification results for random coefficient distributions in perturbed utility models. We cover discrete and continuous choice models. We establish identification using variation in mean quantities, and the results apply when an analyst observes aggregate demands but not whether goods are chosen together. We require exclusion restrictions and independence between random slope coefficients and random intercepts. We do not require regressors to have large supports or parametric assumptions.","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identification of Random Coefficient Latent Utility Models\",\"authors\":\"R. Allen, John Rehbeck\",\"doi\":\"10.2139/ssrn.3545696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides nonparametric identification results for random coefficient distributions in perturbed utility models. We cover discrete and continuous choice models. We establish identification using variation in mean quantities, and the results apply when an analyst observes aggregate demands but not whether goods are chosen together. We require exclusion restrictions and independence between random slope coefficients and random intercepts. We do not require regressors to have large supports or parametric assumptions.\",\"PeriodicalId\":165362,\"journal\":{\"name\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3545696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3545696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提供了摄动实用新型中随机系数分布的非参数辨识结果。我们涵盖了离散和连续选择模型。我们使用平均数量的变化来建立识别,当分析师观察总需求而不是商品是否被一起选择时,结果适用。我们需要随机斜率系数和随机截距之间的排除限制和独立性。我们不要求回归量有很大的支持或参数假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Random Coefficient Latent Utility Models
This paper provides nonparametric identification results for random coefficient distributions in perturbed utility models. We cover discrete and continuous choice models. We establish identification using variation in mean quantities, and the results apply when an analyst observes aggregate demands but not whether goods are chosen together. We require exclusion restrictions and independence between random slope coefficients and random intercepts. We do not require regressors to have large supports or parametric assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信