电力系统在严重紧急扰动下暂态稳定的改进电制动方法

Aleksandr P. Dolgov, A. Arestova
{"title":"电力系统在严重紧急扰动下暂态稳定的改进电制动方法","authors":"Aleksandr P. Dolgov, A. Arestova","doi":"10.1109/USSEC53120.2021.9655743","DOIUrl":null,"url":null,"abstract":"The paper deals with the problem of maintaining the transient stability of the electric power system under severe emergency disturbances. The relevance of the study is due to the continuity of the processes of production, transmission, and consumption of electric power. The lack of energy storage technologies in the volumes necessary for the consumer causes increased requirements for power system reliability, transient stability, and survivability. The paper provides an overview of the existing and modern developed methods of increasing transient stability. An improved method of electric braking for synchronous generators is proposed, which provides transient stability under severe disturbances of any severity and duration. The method ensures successful resynchronization under generator loads up to the steady-state stability limit for the post-emergency conditions. A description of the method of electrical braking is presented, which requires precision synchronization with control of voltages, angles, and slip between synchronizing zones. The results of the developed method implementation for a two-machine system are illustrated, transient oscillograms are shown. Mathematical modeling was performed using the Mustang software package. The results of mathematical modeling prove the effectiveness of the proposed method. The developed method of electric braking makes it possible to refuse additional network construction to meet the requirements for transient stability.","PeriodicalId":260032,"journal":{"name":"2021 Ural-Siberian Smart Energy Conference (USSEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Method of Electric Braking for Power System Transient Stability in Severe Emergency Disturbances\",\"authors\":\"Aleksandr P. Dolgov, A. Arestova\",\"doi\":\"10.1109/USSEC53120.2021.9655743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the problem of maintaining the transient stability of the electric power system under severe emergency disturbances. The relevance of the study is due to the continuity of the processes of production, transmission, and consumption of electric power. The lack of energy storage technologies in the volumes necessary for the consumer causes increased requirements for power system reliability, transient stability, and survivability. The paper provides an overview of the existing and modern developed methods of increasing transient stability. An improved method of electric braking for synchronous generators is proposed, which provides transient stability under severe disturbances of any severity and duration. The method ensures successful resynchronization under generator loads up to the steady-state stability limit for the post-emergency conditions. A description of the method of electrical braking is presented, which requires precision synchronization with control of voltages, angles, and slip between synchronizing zones. The results of the developed method implementation for a two-machine system are illustrated, transient oscillograms are shown. Mathematical modeling was performed using the Mustang software package. The results of mathematical modeling prove the effectiveness of the proposed method. The developed method of electric braking makes it possible to refuse additional network construction to meet the requirements for transient stability.\",\"PeriodicalId\":260032,\"journal\":{\"name\":\"2021 Ural-Siberian Smart Energy Conference (USSEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Ural-Siberian Smart Energy Conference (USSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/USSEC53120.2021.9655743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Ural-Siberian Smart Energy Conference (USSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USSEC53120.2021.9655743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了电力系统在严重突发扰动下的暂态稳定问题。这项研究的相关性是由于电力的生产、传输和消费过程的连续性。消费者所需的储能技术的缺乏导致对电力系统可靠性、暂态稳定性和生存能力的要求增加。本文概述了现有的和现代开发的提高暂态稳定性的方法。提出了一种改进的同步发电机电制动方法,该方法在任何严重程度和持续时间的严重干扰下都能提供暂态稳定性。该方法确保发电机负载下的成功再同步达到应急后的稳态稳定极限。介绍了电制动的方法,该方法要求精确同步,并控制同步区之间的电压、角度和滑移。文中给出了该方法在双机系统中的实现结果,并给出了瞬态示波图。采用Mustang软件包进行数学建模。数学建模的结果证明了该方法的有效性。开发的电制动方法可以避免额外的网络建设,以满足暂态稳定的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Method of Electric Braking for Power System Transient Stability in Severe Emergency Disturbances
The paper deals with the problem of maintaining the transient stability of the electric power system under severe emergency disturbances. The relevance of the study is due to the continuity of the processes of production, transmission, and consumption of electric power. The lack of energy storage technologies in the volumes necessary for the consumer causes increased requirements for power system reliability, transient stability, and survivability. The paper provides an overview of the existing and modern developed methods of increasing transient stability. An improved method of electric braking for synchronous generators is proposed, which provides transient stability under severe disturbances of any severity and duration. The method ensures successful resynchronization under generator loads up to the steady-state stability limit for the post-emergency conditions. A description of the method of electrical braking is presented, which requires precision synchronization with control of voltages, angles, and slip between synchronizing zones. The results of the developed method implementation for a two-machine system are illustrated, transient oscillograms are shown. Mathematical modeling was performed using the Mustang software package. The results of mathematical modeling prove the effectiveness of the proposed method. The developed method of electric braking makes it possible to refuse additional network construction to meet the requirements for transient stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信