M. Neupane, D. Ruzmetov, R. Burke, A. G. Birdwell, Decarlos Taylor, M. Chin, T. O'Regan, F. Crowne, B. Nichols, P. Shah, E. Byrd, T. Ivanov
{"title":"在3D基板上集成2D材料的挑战和机遇:材料和器件的观点","authors":"M. Neupane, D. Ruzmetov, R. Burke, A. G. Birdwell, Decarlos Taylor, M. Chin, T. O'Regan, F. Crowne, B. Nichols, P. Shah, E. Byrd, T. Ivanov","doi":"10.1109/DRC.2018.8442141","DOIUrl":null,"url":null,"abstract":"In recent years, large investments into the research of semiconducting two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) have elucidated interesting device related physical phenomena such as valleytronics [1], 2D superconductivity [2], 2D excitonic effects [3] and vertical tunneling [4]. TMDs offer layer-dependent chemical tunability of electronic and optoelectronic properties governed by interlayer van der Waals (vdW) forces [5]. Because of their layered nature, these low-dimensional materials can be combined to form multifunctional heterostructure materials exhibiting entirely new physical systems offering new degrees of flexibility in designing electronics, optoelectronics and other novel devices [6], [7]. In the last couple of years, the focus in the 2D materials research have shifted from exploration of proof-of-concept devices using mechanically exfoliated materials to more advanced device processing using high-quality large-scale growth based on advanced scalable vdW-epitaxy techniques such as powder vapor deposition (PVD) and chemical vapor deposition (CVD).","PeriodicalId":269641,"journal":{"name":"2018 76th Device Research Conference (DRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Challenges and opportunities in integration of 2D materials on 3D substrates: Materials and device perspectives\",\"authors\":\"M. Neupane, D. Ruzmetov, R. Burke, A. G. Birdwell, Decarlos Taylor, M. Chin, T. O'Regan, F. Crowne, B. Nichols, P. Shah, E. Byrd, T. Ivanov\",\"doi\":\"10.1109/DRC.2018.8442141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, large investments into the research of semiconducting two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) have elucidated interesting device related physical phenomena such as valleytronics [1], 2D superconductivity [2], 2D excitonic effects [3] and vertical tunneling [4]. TMDs offer layer-dependent chemical tunability of electronic and optoelectronic properties governed by interlayer van der Waals (vdW) forces [5]. Because of their layered nature, these low-dimensional materials can be combined to form multifunctional heterostructure materials exhibiting entirely new physical systems offering new degrees of flexibility in designing electronics, optoelectronics and other novel devices [6], [7]. In the last couple of years, the focus in the 2D materials research have shifted from exploration of proof-of-concept devices using mechanically exfoliated materials to more advanced device processing using high-quality large-scale growth based on advanced scalable vdW-epitaxy techniques such as powder vapor deposition (PVD) and chemical vapor deposition (CVD).\",\"PeriodicalId\":269641,\"journal\":{\"name\":\"2018 76th Device Research Conference (DRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 76th Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2018.8442141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 76th Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2018.8442141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Challenges and opportunities in integration of 2D materials on 3D substrates: Materials and device perspectives
In recent years, large investments into the research of semiconducting two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) have elucidated interesting device related physical phenomena such as valleytronics [1], 2D superconductivity [2], 2D excitonic effects [3] and vertical tunneling [4]. TMDs offer layer-dependent chemical tunability of electronic and optoelectronic properties governed by interlayer van der Waals (vdW) forces [5]. Because of their layered nature, these low-dimensional materials can be combined to form multifunctional heterostructure materials exhibiting entirely new physical systems offering new degrees of flexibility in designing electronics, optoelectronics and other novel devices [6], [7]. In the last couple of years, the focus in the 2D materials research have shifted from exploration of proof-of-concept devices using mechanically exfoliated materials to more advanced device processing using high-quality large-scale growth based on advanced scalable vdW-epitaxy techniques such as powder vapor deposition (PVD) and chemical vapor deposition (CVD).