基于表面增强拉曼散射(SERS)的单光纤探针

Yi Zhang, C. Gu, A. Schwartzberg, J.Z. Zhang
{"title":"基于表面增强拉曼散射(SERS)的单光纤探针","authors":"Yi Zhang, C. Gu, A. Schwartzberg, J.Z. Zhang","doi":"10.1109/ICSENS.2005.1597893","DOIUrl":null,"url":null,"abstract":"Fiber SERS probes have great potential in chemical and biological sensing. To our knowledge, there has been no demonstration of any single-fiber SERS probes where both the excitation beam and SERS signals are transmitted through the same fiber with a significant length, which is required for a flexible probe. In this paper, we report our proof-of-concept demonstration of a single-fiber SERS probe with a 1 m long fiber. We demonstrate various configurations of the fiber probe, where the SERS substrate is coated on either a side-polished or end-polished fiber surface. While the side-polished fibers provide a large platform for signal generation, the end polished fibers are easy to manipulate and can transmit SERS signals back through the fiber. In our experiments, we have successfully detected SERS signals both at the end where the fiber is polished and coated with the SERS substrate and at the end where the excitation light is coupled into the fiber, using R6G as a testing sample","PeriodicalId":119985,"journal":{"name":"IEEE Sensors, 2005.","volume":"2 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Single-fiber probe based on surface enhanced Raman scattering (SERS)\",\"authors\":\"Yi Zhang, C. Gu, A. Schwartzberg, J.Z. Zhang\",\"doi\":\"10.1109/ICSENS.2005.1597893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fiber SERS probes have great potential in chemical and biological sensing. To our knowledge, there has been no demonstration of any single-fiber SERS probes where both the excitation beam and SERS signals are transmitted through the same fiber with a significant length, which is required for a flexible probe. In this paper, we report our proof-of-concept demonstration of a single-fiber SERS probe with a 1 m long fiber. We demonstrate various configurations of the fiber probe, where the SERS substrate is coated on either a side-polished or end-polished fiber surface. While the side-polished fibers provide a large platform for signal generation, the end polished fibers are easy to manipulate and can transmit SERS signals back through the fiber. In our experiments, we have successfully detected SERS signals both at the end where the fiber is polished and coated with the SERS substrate and at the end where the excitation light is coupled into the fiber, using R6G as a testing sample\",\"PeriodicalId\":119985,\"journal\":{\"name\":\"IEEE Sensors, 2005.\",\"volume\":\"2 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2005.1597893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2005.1597893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

光纤SERS探针在化学和生物传感领域具有很大的应用潜力。据我们所知,没有任何单光纤SERS探针的演示,其中激发束和SERS信号都通过具有显著长度的同一光纤传输,这是柔性探针所必需的。在本文中,我们报告了我们的单光纤SERS探针的概念验证演示,该探针具有1米长的光纤。我们演示了光纤探针的各种配置,其中SERS基板涂覆在侧面抛光或末端抛光的光纤表面上。侧面抛光的光纤为信号产生提供了一个大的平台,而末端抛光的光纤易于操作,可以通过光纤将SERS信号传回。在我们的实验中,我们使用R6G作为测试样品,成功地在光纤抛光和涂覆SERS基板的末端和激发光耦合到光纤的末端检测到SERS信号
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-fiber probe based on surface enhanced Raman scattering (SERS)
Fiber SERS probes have great potential in chemical and biological sensing. To our knowledge, there has been no demonstration of any single-fiber SERS probes where both the excitation beam and SERS signals are transmitted through the same fiber with a significant length, which is required for a flexible probe. In this paper, we report our proof-of-concept demonstration of a single-fiber SERS probe with a 1 m long fiber. We demonstrate various configurations of the fiber probe, where the SERS substrate is coated on either a side-polished or end-polished fiber surface. While the side-polished fibers provide a large platform for signal generation, the end polished fibers are easy to manipulate and can transmit SERS signals back through the fiber. In our experiments, we have successfully detected SERS signals both at the end where the fiber is polished and coated with the SERS substrate and at the end where the excitation light is coupled into the fiber, using R6G as a testing sample
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信