采用压缩LUT乘法器和低功耗WL电压微调方案的55nm 32Mb数字Flash CIM用于AI边缘推断

Hongyang Hu, Zi Wang, Xiaoxin Xu, K. Xi, Kun Zhang, Junyu Zhang, C. Dou
{"title":"采用压缩LUT乘法器和低功耗WL电压微调方案的55nm 32Mb数字Flash CIM用于AI边缘推断","authors":"Hongyang Hu, Zi Wang, Xiaoxin Xu, K. Xi, Kun Zhang, Junyu Zhang, C. Dou","doi":"10.1109/APCCAS55924.2022.10090358","DOIUrl":null,"url":null,"abstract":"In this work, we proposed a digital flash computing-in-memory (CIM) architecture using compressed lookup-table multiplier (CLUTM) and low power word-line voltage trimming (LP-WLVT) schemes. The proposed concept is highly compatible to the standard commodity NOR flash memory. Compared to the conventional lookup-table (LUT) multipliers, CLUTM results in 32 times reduction on the area cost in the case of 8-bit multiplication. The LP-WLVT scheme can further reduce the inference power by 14%. The concept is silicon demonstrated in a 55nm 32Mb commercial flash memory, which can perform 8-bit multiply-and-accumulate (MAC) with a throughput of 51.2 GOPs. It provides 1.778ms frame shift when running TC-resnet8 network, which is $5 \\times$ more efficient than the previous works. The CLUTM-based digital CIM architecture can play an important role to enable commercial flash for highly-efficient AI edge inference.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A 55nm 32Mb Digital Flash CIM Using Compressed LUT Multiplier and Low Power WL Voltage Trimming Scheme for AI Edge Inference\",\"authors\":\"Hongyang Hu, Zi Wang, Xiaoxin Xu, K. Xi, Kun Zhang, Junyu Zhang, C. Dou\",\"doi\":\"10.1109/APCCAS55924.2022.10090358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we proposed a digital flash computing-in-memory (CIM) architecture using compressed lookup-table multiplier (CLUTM) and low power word-line voltage trimming (LP-WLVT) schemes. The proposed concept is highly compatible to the standard commodity NOR flash memory. Compared to the conventional lookup-table (LUT) multipliers, CLUTM results in 32 times reduction on the area cost in the case of 8-bit multiplication. The LP-WLVT scheme can further reduce the inference power by 14%. The concept is silicon demonstrated in a 55nm 32Mb commercial flash memory, which can perform 8-bit multiply-and-accumulate (MAC) with a throughput of 51.2 GOPs. It provides 1.778ms frame shift when running TC-resnet8 network, which is $5 \\\\times$ more efficient than the previous works. The CLUTM-based digital CIM architecture can play an important role to enable commercial flash for highly-efficient AI edge inference.\",\"PeriodicalId\":243739,\"journal\":{\"name\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS55924.2022.10090358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一个使用压缩查找表乘法器(CLUTM)和低功耗字线电压微调(LP-WLVT)方案的数字闪存内存计算(CIM)架构。所提出的概念与标准的商用NOR快闪记忆体高度相容。与传统的查找表(LUT)乘法器相比,在8位乘法的情况下,CLUTM的面积成本降低了32倍。LP-WLVT方案可以进一步降低14%的推理能力。该概念在55nm 32Mb商用闪存中得到了验证,该闪存可以执行8位乘法和累积(MAC),吞吐量为51.2 GOPs。它在运行TC-resnet8网络时提供1.778ms的帧移位,比以前的工作效率提高了5倍。基于clutm的数字CIM架构可以为实现高效AI边缘推理的商用闪存发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 55nm 32Mb Digital Flash CIM Using Compressed LUT Multiplier and Low Power WL Voltage Trimming Scheme for AI Edge Inference
In this work, we proposed a digital flash computing-in-memory (CIM) architecture using compressed lookup-table multiplier (CLUTM) and low power word-line voltage trimming (LP-WLVT) schemes. The proposed concept is highly compatible to the standard commodity NOR flash memory. Compared to the conventional lookup-table (LUT) multipliers, CLUTM results in 32 times reduction on the area cost in the case of 8-bit multiplication. The LP-WLVT scheme can further reduce the inference power by 14%. The concept is silicon demonstrated in a 55nm 32Mb commercial flash memory, which can perform 8-bit multiply-and-accumulate (MAC) with a throughput of 51.2 GOPs. It provides 1.778ms frame shift when running TC-resnet8 network, which is $5 \times$ more efficient than the previous works. The CLUTM-based digital CIM architecture can play an important role to enable commercial flash for highly-efficient AI edge inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信