沿厄米特多项式编码高斯噪声信道

E. Abbe, Lizhong Zheng
{"title":"沿厄米特多项式编码高斯噪声信道","authors":"E. Abbe, Lizhong Zheng","doi":"10.1109/ISIT.2009.5205789","DOIUrl":null,"url":null,"abstract":"This paper shows that the capacity achieving input distribution for a fading Gaussian broadcast channel is not Gaussian in general. The construction of non-Gaussian distributions that strictly outperform Gaussian ones, for certain characterized fading distributions, is provided. The ability of analyzing non-Gaussian input distributions with closed form expressions is made possible in a local setting. It is shown that there exists a specific coordinate system, based on Hermite polynomials, which parametrizes Gaussian neighborhoods and which is particularly suitable to study the entropic operators encountered with Gaussian noise.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"85 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Coding along Hermite polynomials for Gaussian noise channels\",\"authors\":\"E. Abbe, Lizhong Zheng\",\"doi\":\"10.1109/ISIT.2009.5205789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows that the capacity achieving input distribution for a fading Gaussian broadcast channel is not Gaussian in general. The construction of non-Gaussian distributions that strictly outperform Gaussian ones, for certain characterized fading distributions, is provided. The ability of analyzing non-Gaussian input distributions with closed form expressions is made possible in a local setting. It is shown that there exists a specific coordinate system, based on Hermite polynomials, which parametrizes Gaussian neighborhoods and which is particularly suitable to study the entropic operators encountered with Gaussian noise.\",\"PeriodicalId\":412925,\"journal\":{\"name\":\"2009 IEEE International Symposium on Information Theory\",\"volume\":\"85 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2009.5205789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文证明了衰落高斯广播信道实现输入分布的能力一般不是高斯的。对于某些特征衰落分布,给出了严格优于高斯分布的非高斯分布的构造。用封闭形式表达式分析非高斯输入分布的能力在局部环境下成为可能。结果表明,存在一个基于埃尔米特多项式的特定坐标系,它可以参数化高斯邻域,特别适合于研究高斯噪声下的熵算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coding along Hermite polynomials for Gaussian noise channels
This paper shows that the capacity achieving input distribution for a fading Gaussian broadcast channel is not Gaussian in general. The construction of non-Gaussian distributions that strictly outperform Gaussian ones, for certain characterized fading distributions, is provided. The ability of analyzing non-Gaussian input distributions with closed form expressions is made possible in a local setting. It is shown that there exists a specific coordinate system, based on Hermite polynomials, which parametrizes Gaussian neighborhoods and which is particularly suitable to study the entropic operators encountered with Gaussian noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信