基于Krylov子空间和mbf的大型有限银纳米棒阵列在散射体存在下的分析

D. Tihon, N. Ozdemir, C. Craeye
{"title":"基于Krylov子空间和mbf的大型有限银纳米棒阵列在散射体存在下的分析","authors":"D. Tihon, N. Ozdemir, C. Craeye","doi":"10.1109/NEMO.2014.6995708","DOIUrl":null,"url":null,"abstract":"Metamaterials receive increasing attention at optical frequencies due to their potential for subwavelength imaging. Among the possible structures are dense, doubly periodic arrays of silver nanorods where image transmission is achieved via surface plasmon polaritons. However, the numerical simulation of such dense structures may require excessive computational resources without employing an efficient numerical approach. In this paper, the multiple-scattering based Macro Basis Function (MBF) method is applied to the shielded-block preconditioned matrix, which represents interactions between different elements of the array (subdomains). The “rule of thumb” that relates the number of MBFs generated on a subdomain to the number of iterations required by the Full Orthogonalization Method (FOM) for the same error level is investigated. For high levels of error, the number of MBFs are observed to be smaller than the number of iterations required. Conversely, for low levels of error, the FOM converges faster.","PeriodicalId":273349,"journal":{"name":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Krylov subspace-based and MBF-based analysis of large finite arrays of silver nanorods in the presence of a scatterer\",\"authors\":\"D. Tihon, N. Ozdemir, C. Craeye\",\"doi\":\"10.1109/NEMO.2014.6995708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metamaterials receive increasing attention at optical frequencies due to their potential for subwavelength imaging. Among the possible structures are dense, doubly periodic arrays of silver nanorods where image transmission is achieved via surface plasmon polaritons. However, the numerical simulation of such dense structures may require excessive computational resources without employing an efficient numerical approach. In this paper, the multiple-scattering based Macro Basis Function (MBF) method is applied to the shielded-block preconditioned matrix, which represents interactions between different elements of the array (subdomains). The “rule of thumb” that relates the number of MBFs generated on a subdomain to the number of iterations required by the Full Orthogonalization Method (FOM) for the same error level is investigated. For high levels of error, the number of MBFs are observed to be smaller than the number of iterations required. Conversely, for low levels of error, the FOM converges faster.\",\"PeriodicalId\":273349,\"journal\":{\"name\":\"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMO.2014.6995708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO.2014.6995708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超材料由于具有亚波长成像的潜力,在光学频率上受到越来越多的关注。在可能的结构中,密集的双周期银纳米棒阵列通过表面等离子激元极化实现图像传输。然而,这种密集结构的数值模拟可能需要过多的计算资源,而没有采用有效的数值方法。本文将基于多重散射的宏基函数(Macro Basis Function, MBF)方法应用于表示阵列(子域)不同元素之间相互作用的屏蔽块预条件矩阵。研究了将子域上生成的mbf的数量与相同错误级别的完全正交化方法(FOM)所需的迭代次数联系起来的“经验法则”。对于高水平的错误,可以观察到mbf的数量小于所需的迭代次数。相反,对于低误差水平,FOM收敛得更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Krylov subspace-based and MBF-based analysis of large finite arrays of silver nanorods in the presence of a scatterer
Metamaterials receive increasing attention at optical frequencies due to their potential for subwavelength imaging. Among the possible structures are dense, doubly periodic arrays of silver nanorods where image transmission is achieved via surface plasmon polaritons. However, the numerical simulation of such dense structures may require excessive computational resources without employing an efficient numerical approach. In this paper, the multiple-scattering based Macro Basis Function (MBF) method is applied to the shielded-block preconditioned matrix, which represents interactions between different elements of the array (subdomains). The “rule of thumb” that relates the number of MBFs generated on a subdomain to the number of iterations required by the Full Orthogonalization Method (FOM) for the same error level is investigated. For high levels of error, the number of MBFs are observed to be smaller than the number of iterations required. Conversely, for low levels of error, the FOM converges faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信