{"title":"对carathimodory的素数端点理论的一些方面进行了真正的拓扑处理","authors":"J. Kennedy","doi":"10.18273/revint.v41n1-2023004","DOIUrl":null,"url":null,"abstract":"A homeomorphism approximation technique is applied to give (1) proofs of some theorems of C. Carathéodory, and (2) a proof of a theorem of N. Rutt. The proofs use only tools from general topology (and are new in that respect), and a generalization of a theorem of Carathéodory is obtained.","PeriodicalId":402331,"journal":{"name":"Revista Integración","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A really topological treatment of some aspects of Carathéodory’s theory of prime ends\",\"authors\":\"J. Kennedy\",\"doi\":\"10.18273/revint.v41n1-2023004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A homeomorphism approximation technique is applied to give (1) proofs of some theorems of C. Carathéodory, and (2) a proof of a theorem of N. Rutt. The proofs use only tools from general topology (and are new in that respect), and a generalization of a theorem of Carathéodory is obtained.\",\"PeriodicalId\":402331,\"journal\":{\"name\":\"Revista Integración\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Integración\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revint.v41n1-2023004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Integración","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revint.v41n1-2023004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A really topological treatment of some aspects of Carathéodory’s theory of prime ends
A homeomorphism approximation technique is applied to give (1) proofs of some theorems of C. Carathéodory, and (2) a proof of a theorem of N. Rutt. The proofs use only tools from general topology (and are new in that respect), and a generalization of a theorem of Carathéodory is obtained.