碳纳米管电极三维忆阻1D-1RRAM横杆的电热分析

F. Zayer, K. Lahbacha, W. Dghais, H. Belgacem, M. de Magistris, A. Melnikov, A. Maffucci
{"title":"碳纳米管电极三维忆阻1D-1RRAM横杆的电热分析","authors":"F. Zayer, K. Lahbacha, W. Dghais, H. Belgacem, M. de Magistris, A. Melnikov, A. Maffucci","doi":"10.1109/DTSS.2019.8915266","DOIUrl":null,"url":null,"abstract":"Resistive random access memory (RRAM) is a promising candidate for the next generation nonvolatile memory technology. Conventional materials so far used for RRAM technology suffer from a severe issue related to the temperature increase. In this paper, we investigate the possibility of mitigating such a problem by exploiting the excellent properties of novel nanostructured materials, such as the Carbon Nanotubes (CNTs). To this end, a 3D 1Diode-1RRAM crossbar is here analyzed, comparing conventional Ni metal electrodes to novel CNT ones. Accurate temperature-dependent electrical and thermal conductivities are used to simulate the behavior of the materials. An electrothermal analysis performed by means of a full 3D numerical model of such a structure provides the voltage and temperature distributions over the 3D 1D-1RRAM crossbar. The use of CNT electrodes is demonstrated to provide excellent uniformity in the voltage distribution, good electrical current pathways distribution and a temperature reduction more than 300K over the baseline crossbar design.","PeriodicalId":342516,"journal":{"name":"2019 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electrothermal Analysis of 3D Memristive 1D-1RRAM Crossbar with Carbon Nanotube Electrodes\",\"authors\":\"F. Zayer, K. Lahbacha, W. Dghais, H. Belgacem, M. de Magistris, A. Melnikov, A. Maffucci\",\"doi\":\"10.1109/DTSS.2019.8915266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resistive random access memory (RRAM) is a promising candidate for the next generation nonvolatile memory technology. Conventional materials so far used for RRAM technology suffer from a severe issue related to the temperature increase. In this paper, we investigate the possibility of mitigating such a problem by exploiting the excellent properties of novel nanostructured materials, such as the Carbon Nanotubes (CNTs). To this end, a 3D 1Diode-1RRAM crossbar is here analyzed, comparing conventional Ni metal electrodes to novel CNT ones. Accurate temperature-dependent electrical and thermal conductivities are used to simulate the behavior of the materials. An electrothermal analysis performed by means of a full 3D numerical model of such a structure provides the voltage and temperature distributions over the 3D 1D-1RRAM crossbar. The use of CNT electrodes is demonstrated to provide excellent uniformity in the voltage distribution, good electrical current pathways distribution and a temperature reduction more than 300K over the baseline crossbar design.\",\"PeriodicalId\":342516,\"journal\":{\"name\":\"2019 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DTSS.2019.8915266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTSS.2019.8915266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电阻式随机存取存储器(RRAM)是下一代非易失性存储器技术的理想选择。到目前为止,用于RRAM技术的传统材料面临着与温度升高有关的严重问题。在本文中,我们研究了利用碳纳米管(CNTs)等新型纳米结构材料的优异性能来缓解这一问题的可能性。为此,本文分析了一个3D二极管- 1rram交叉杆,比较了传统的Ni金属电极和新型碳纳米管电极。精确的温度相关的电导率和导热系数被用来模拟材料的行为。通过这种结构的完整3D数值模型进行的电热分析提供了3D 1D-1RRAM横杆上的电压和温度分布。碳纳米管电极的使用被证明在电压分布、良好的电流路径分布和温度降低超过300K的基线交叉设计方面提供了极好的均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrothermal Analysis of 3D Memristive 1D-1RRAM Crossbar with Carbon Nanotube Electrodes
Resistive random access memory (RRAM) is a promising candidate for the next generation nonvolatile memory technology. Conventional materials so far used for RRAM technology suffer from a severe issue related to the temperature increase. In this paper, we investigate the possibility of mitigating such a problem by exploiting the excellent properties of novel nanostructured materials, such as the Carbon Nanotubes (CNTs). To this end, a 3D 1Diode-1RRAM crossbar is here analyzed, comparing conventional Ni metal electrodes to novel CNT ones. Accurate temperature-dependent electrical and thermal conductivities are used to simulate the behavior of the materials. An electrothermal analysis performed by means of a full 3D numerical model of such a structure provides the voltage and temperature distributions over the 3D 1D-1RRAM crossbar. The use of CNT electrodes is demonstrated to provide excellent uniformity in the voltage distribution, good electrical current pathways distribution and a temperature reduction more than 300K over the baseline crossbar design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信