电流感应电动机的神经网络逆控制

X. Dai, Xin Wang
{"title":"电流感应电动机的神经网络逆控制","authors":"X. Dai, Xin Wang","doi":"10.1109/ISIE.2008.4677051","DOIUrl":null,"url":null,"abstract":"The decoupling and linearize (D&L) control of induction motor is an important approach to improve the performance further. The analytical inverse system can realize D&L of nonlinear system when the model is exactly known, but for the induction motor with parameters varying and disturbance, the D&L is destroyed. So the neural network inverse system (NNIS) theory was adapted to approximate the analytical inverse system in order to weaken the couple of rotor flux and speed, the NNIS was designed for the induction motor in the synchronous rotating (dq) reference frame in this paper. Through the analytical inverse system expression we pointed out that the D&L effect is unrelated to the position of d axis. Subsequently, the neural network inverse control (NNIC) structure was proposed. As a special case, the NNIS of induction motor in rotor field oriented (MT) reference frame was also given, the comparison of this NNIC with direct rotor field oriented control (DRFOC) was done and we conclude that it is an improved method of DRFOC. At last, the simulation and experiment were done to test the proposed structures.","PeriodicalId":262939,"journal":{"name":"2008 IEEE International Symposium on Industrial Electronics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Neural network inverse control of current-fed induction motor\",\"authors\":\"X. Dai, Xin Wang\",\"doi\":\"10.1109/ISIE.2008.4677051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The decoupling and linearize (D&L) control of induction motor is an important approach to improve the performance further. The analytical inverse system can realize D&L of nonlinear system when the model is exactly known, but for the induction motor with parameters varying and disturbance, the D&L is destroyed. So the neural network inverse system (NNIS) theory was adapted to approximate the analytical inverse system in order to weaken the couple of rotor flux and speed, the NNIS was designed for the induction motor in the synchronous rotating (dq) reference frame in this paper. Through the analytical inverse system expression we pointed out that the D&L effect is unrelated to the position of d axis. Subsequently, the neural network inverse control (NNIC) structure was proposed. As a special case, the NNIS of induction motor in rotor field oriented (MT) reference frame was also given, the comparison of this NNIC with direct rotor field oriented control (DRFOC) was done and we conclude that it is an improved method of DRFOC. At last, the simulation and experiment were done to test the proposed structures.\",\"PeriodicalId\":262939,\"journal\":{\"name\":\"2008 IEEE International Symposium on Industrial Electronics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2008.4677051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2008.4677051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

异步电动机的解耦和线性化控制是进一步提高异步电动机性能的重要途径。解析逆系统可以在模型完全已知的情况下实现非线性系统的D&L,但对于具有参数变化和扰动的异步电机,其D&L被破坏。为此,将神经网络逆系统(NNIS)理论应用于解析逆系统的近似,以减弱转子磁链和转速的耦合,设计了同步旋转参照系下异步电动机的NNIS系统。通过解析逆系统表达式指出,D&L效应与d轴位置无关。随后,提出了神经网络逆控制(NNIC)结构。作为一种特殊情况,给出了转子磁场定向(MT)参考系中感应电机的NNIC,并将其与直接转子磁场定向控制(DRFOC)进行了比较,得出了该方法是一种改进的DRFOC方法。最后,通过仿真和实验对所提出的结构进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network inverse control of current-fed induction motor
The decoupling and linearize (D&L) control of induction motor is an important approach to improve the performance further. The analytical inverse system can realize D&L of nonlinear system when the model is exactly known, but for the induction motor with parameters varying and disturbance, the D&L is destroyed. So the neural network inverse system (NNIS) theory was adapted to approximate the analytical inverse system in order to weaken the couple of rotor flux and speed, the NNIS was designed for the induction motor in the synchronous rotating (dq) reference frame in this paper. Through the analytical inverse system expression we pointed out that the D&L effect is unrelated to the position of d axis. Subsequently, the neural network inverse control (NNIC) structure was proposed. As a special case, the NNIS of induction motor in rotor field oriented (MT) reference frame was also given, the comparison of this NNIC with direct rotor field oriented control (DRFOC) was done and we conclude that it is an improved method of DRFOC. At last, the simulation and experiment were done to test the proposed structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信