基于最优卡尔曼滤波/平滑器的惯性导航系统误差分析

Te-chang Li
{"title":"基于最优卡尔曼滤波/平滑器的惯性导航系统误差分析","authors":"Te-chang Li","doi":"10.1109/PLANS.2004.1308983","DOIUrl":null,"url":null,"abstract":"The optimal Kalman filter/smoother is an effective tool to systematically assess the error sources of an Inertial Navigation System (INS) including instrument (gyro and accelerometer) errors and initial conditions. In order to best utilize the entire set of the available test data in the estimation of INS error, a fixed-interval smoother was chosen. The fixed-interval smoothed estimate is the optimal combination of two Kalman filters: forward (conventional) filter and backward filter. Together these two filters utilize all available measurements and yield the optimal smoothed estimate. The data from two van tests was collected in the free inertial mode without updates from the Global Positioning System (CPS). The CPS data and INS data are recorded in two separate files and both data streams are time tagged to Greenwich Time (GMT). The CPS latitude and longitude data obtained from CPS was used as reference. The INS position errors are the difference between the INS and the CPS positions. The measurements of INS position errors are then analyzed to obtain estimates of the error sources discussed above using the Kalman filter/smoother. This paper describes the INS van-test data, the optimal Kalman filter/smoother utilized for the error analysis, the INS error model, and the results of the analysis. Analysis results are verified through measurement reconstruction and the agreement between the actual and reconstructed measurements is excellent. The analysis confirms the existence of a very large scale factor error in one accelerometer.","PeriodicalId":102388,"journal":{"name":"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Analysis of Inertial Navigation System errors from van testing using an optimal Kalman filter/smoother\",\"authors\":\"Te-chang Li\",\"doi\":\"10.1109/PLANS.2004.1308983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal Kalman filter/smoother is an effective tool to systematically assess the error sources of an Inertial Navigation System (INS) including instrument (gyro and accelerometer) errors and initial conditions. In order to best utilize the entire set of the available test data in the estimation of INS error, a fixed-interval smoother was chosen. The fixed-interval smoothed estimate is the optimal combination of two Kalman filters: forward (conventional) filter and backward filter. Together these two filters utilize all available measurements and yield the optimal smoothed estimate. The data from two van tests was collected in the free inertial mode without updates from the Global Positioning System (CPS). The CPS data and INS data are recorded in two separate files and both data streams are time tagged to Greenwich Time (GMT). The CPS latitude and longitude data obtained from CPS was used as reference. The INS position errors are the difference between the INS and the CPS positions. The measurements of INS position errors are then analyzed to obtain estimates of the error sources discussed above using the Kalman filter/smoother. This paper describes the INS van-test data, the optimal Kalman filter/smoother utilized for the error analysis, the INS error model, and the results of the analysis. Analysis results are verified through measurement reconstruction and the agreement between the actual and reconstructed measurements is excellent. The analysis confirms the existence of a very large scale factor error in one accelerometer.\",\"PeriodicalId\":102388,\"journal\":{\"name\":\"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2004.1308983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2004.1308983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

最优卡尔曼滤波/平滑是系统评估惯性导航系统(INS)误差来源的有效工具,包括陀螺仪和加速度计的误差和初始条件。为了最大限度地利用整个可用的测试数据集来估计惯导系统的误差,选择了固定区间的平滑器。固定区间平滑估计是两种卡尔曼滤波的最优组合:前向(传统)滤波和后向滤波。这两个滤波器一起利用所有可用的测量并产生最佳的平滑估计。在没有全球定位系统(CPS)更新的情况下,在自由惯性模式下收集了两次面包车测试的数据。CPS数据和INS数据记录在两个单独的文件中,两个数据流都被标记为格林威治时间(GMT)。以CPS获得的CPS经纬度数据为参考。惯导系统的位置误差是惯导系统与惯导系统位置的差值。然后分析INS位置误差的测量结果,使用卡尔曼滤波/平滑器获得上述误差源的估计。本文介绍了惯导系统的货车试验数据、用于误差分析的最优卡尔曼滤波/平滑器、惯导系统的误差模型以及分析结果。通过测量重构验证了分析结果,实测与重构结果吻合良好。分析证实了某加速度计存在非常大的尺度因子误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Inertial Navigation System errors from van testing using an optimal Kalman filter/smoother
The optimal Kalman filter/smoother is an effective tool to systematically assess the error sources of an Inertial Navigation System (INS) including instrument (gyro and accelerometer) errors and initial conditions. In order to best utilize the entire set of the available test data in the estimation of INS error, a fixed-interval smoother was chosen. The fixed-interval smoothed estimate is the optimal combination of two Kalman filters: forward (conventional) filter and backward filter. Together these two filters utilize all available measurements and yield the optimal smoothed estimate. The data from two van tests was collected in the free inertial mode without updates from the Global Positioning System (CPS). The CPS data and INS data are recorded in two separate files and both data streams are time tagged to Greenwich Time (GMT). The CPS latitude and longitude data obtained from CPS was used as reference. The INS position errors are the difference between the INS and the CPS positions. The measurements of INS position errors are then analyzed to obtain estimates of the error sources discussed above using the Kalman filter/smoother. This paper describes the INS van-test data, the optimal Kalman filter/smoother utilized for the error analysis, the INS error model, and the results of the analysis. Analysis results are verified through measurement reconstruction and the agreement between the actual and reconstructed measurements is excellent. The analysis confirms the existence of a very large scale factor error in one accelerometer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信