一种集成PDMS生物芯片的新型微针阵列,用于微流体系统

S. Paik, Jung-Min Lim, Il-Woo Jung, Yonghwa Park, Sangwon Byun, S. Chung, K. Chun, J. Chang, Dongil Cho
{"title":"一种集成PDMS生物芯片的新型微针阵列,用于微流体系统","authors":"S. Paik, Jung-Min Lim, Il-Woo Jung, Yonghwa Park, Sangwon Byun, S. Chung, K. Chun, J. Chang, Dongil Cho","doi":"10.1109/SENSOR.2003.1217048","DOIUrl":null,"url":null,"abstract":"This paper reports a novel single-crystal-silicon microneedle array, its mechanical properties, its integration with a polydimethylsiloxane (PDMS) biochip, as well as in vitro and in vivo test results. The fabricated microneedle arrays have integrated microchannels, which are fabricated by using the processes of anisotropic dry etching, isotropic dry etching, and trench-refilling. The microchannel diameter is about 20 /spl mu/m. The 2 mm-length microneedle shaft is strong enough to endure 12.6 gf (=23.5 mN) of vertical loading. The fabricated microneedles are planar, which make it easy to integrate with biofluidic devices. As an in vitro test, the microneedle array is integrated with a PDMS biochip, and black ink is injected into a methanol-filled petri dish. The microneedle is tested in vivo by penetrating the mouse skin and precisely pricking into the small vein in the mouse tail.","PeriodicalId":196104,"journal":{"name":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A novel microneedle array integrated with a PDMS biochip for microfluid systems\",\"authors\":\"S. Paik, Jung-Min Lim, Il-Woo Jung, Yonghwa Park, Sangwon Byun, S. Chung, K. Chun, J. Chang, Dongil Cho\",\"doi\":\"10.1109/SENSOR.2003.1217048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a novel single-crystal-silicon microneedle array, its mechanical properties, its integration with a polydimethylsiloxane (PDMS) biochip, as well as in vitro and in vivo test results. The fabricated microneedle arrays have integrated microchannels, which are fabricated by using the processes of anisotropic dry etching, isotropic dry etching, and trench-refilling. The microchannel diameter is about 20 /spl mu/m. The 2 mm-length microneedle shaft is strong enough to endure 12.6 gf (=23.5 mN) of vertical loading. The fabricated microneedles are planar, which make it easy to integrate with biofluidic devices. As an in vitro test, the microneedle array is integrated with a PDMS biochip, and black ink is injected into a methanol-filled petri dish. The microneedle is tested in vivo by penetrating the mouse skin and precisely pricking into the small vein in the mouse tail.\",\"PeriodicalId\":196104,\"journal\":{\"name\":\"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2003.1217048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2003.1217048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文报道了一种新型单晶硅微针阵列及其力学性能、与聚二甲基硅氧烷(PDMS)生物芯片的集成以及体外和体内实验结果。所制备的微针阵列采用各向异性干刻蚀、各向同性干刻蚀和沟槽填充工艺制备微通道。微通道直径约为20 /spl mu/m。2mm长度的微针轴强度足以承受12.6 gf (=23.5 mN)的垂直载荷。所制备的微针是平面的,易于与生物流体器件集成。作为一项体外测试,微针阵列与PDMS生物芯片集成,并将黑色墨水注入充满甲醇的培养皿中。这种微针通过穿透老鼠的皮肤,精确地刺入老鼠尾巴上的小静脉,在体内进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel microneedle array integrated with a PDMS biochip for microfluid systems
This paper reports a novel single-crystal-silicon microneedle array, its mechanical properties, its integration with a polydimethylsiloxane (PDMS) biochip, as well as in vitro and in vivo test results. The fabricated microneedle arrays have integrated microchannels, which are fabricated by using the processes of anisotropic dry etching, isotropic dry etching, and trench-refilling. The microchannel diameter is about 20 /spl mu/m. The 2 mm-length microneedle shaft is strong enough to endure 12.6 gf (=23.5 mN) of vertical loading. The fabricated microneedles are planar, which make it easy to integrate with biofluidic devices. As an in vitro test, the microneedle array is integrated with a PDMS biochip, and black ink is injected into a methanol-filled petri dish. The microneedle is tested in vivo by penetrating the mouse skin and precisely pricking into the small vein in the mouse tail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信