{"title":"利用有效的谱摄动分析,在近线性时间内实现谱图稀疏化","authors":"Zhuo Feng","doi":"10.1145/2897937.2898094","DOIUrl":null,"url":null,"abstract":"Spectral graph sparsification aims to find an ultra-sparse subgraph whose Laplacian matrix can well approximate the original Laplacian matrix in terms of its eigenvalues and eigenvectors. The resultant sparsified subgraph can be efficiently leveraged as a proxy in a variety of numerical computation applications and graph-based algorithms. This paper introduces a practically efficient, nearly-linear time spectral graph sparsification algorithm that can immediately lead to the development of nearly-linear time symmetric diagonally-dominant (SDD) matrix solvers. Our spectral graph sparsi-fication algorithm can efficiently build an ultra-sparse subgraph from a spanning tree subgraph by adding a few “spectrally-critical” off-tree edges back to the spanning tree, which is enabled by a novel spectral perturbation approach and allows to approximately preserve key spectral properties of the original graph Laplacian. Extensive experimental results confirm the nearly-linear runtime scalability of an SDD matrix solver for large-scale, real-world problems, such as VLSI, thermal and finite-element analysis problems, etc. For instance, a sparse SDD matrix with 40 million unknowns and 180 million nonzeros can be solved (1E-3 accuracy level) within two minutes using a single CPU core and about 6GB memory.","PeriodicalId":185271,"journal":{"name":"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Spectral graph sparsification in nearly-linear time leveraging efficient spectral perturbation analysis\",\"authors\":\"Zhuo Feng\",\"doi\":\"10.1145/2897937.2898094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral graph sparsification aims to find an ultra-sparse subgraph whose Laplacian matrix can well approximate the original Laplacian matrix in terms of its eigenvalues and eigenvectors. The resultant sparsified subgraph can be efficiently leveraged as a proxy in a variety of numerical computation applications and graph-based algorithms. This paper introduces a practically efficient, nearly-linear time spectral graph sparsification algorithm that can immediately lead to the development of nearly-linear time symmetric diagonally-dominant (SDD) matrix solvers. Our spectral graph sparsi-fication algorithm can efficiently build an ultra-sparse subgraph from a spanning tree subgraph by adding a few “spectrally-critical” off-tree edges back to the spanning tree, which is enabled by a novel spectral perturbation approach and allows to approximately preserve key spectral properties of the original graph Laplacian. Extensive experimental results confirm the nearly-linear runtime scalability of an SDD matrix solver for large-scale, real-world problems, such as VLSI, thermal and finite-element analysis problems, etc. For instance, a sparse SDD matrix with 40 million unknowns and 180 million nonzeros can be solved (1E-3 accuracy level) within two minutes using a single CPU core and about 6GB memory.\",\"PeriodicalId\":185271,\"journal\":{\"name\":\"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897937.2898094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897937.2898094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectral graph sparsification in nearly-linear time leveraging efficient spectral perturbation analysis
Spectral graph sparsification aims to find an ultra-sparse subgraph whose Laplacian matrix can well approximate the original Laplacian matrix in terms of its eigenvalues and eigenvectors. The resultant sparsified subgraph can be efficiently leveraged as a proxy in a variety of numerical computation applications and graph-based algorithms. This paper introduces a practically efficient, nearly-linear time spectral graph sparsification algorithm that can immediately lead to the development of nearly-linear time symmetric diagonally-dominant (SDD) matrix solvers. Our spectral graph sparsi-fication algorithm can efficiently build an ultra-sparse subgraph from a spanning tree subgraph by adding a few “spectrally-critical” off-tree edges back to the spanning tree, which is enabled by a novel spectral perturbation approach and allows to approximately preserve key spectral properties of the original graph Laplacian. Extensive experimental results confirm the nearly-linear runtime scalability of an SDD matrix solver for large-scale, real-world problems, such as VLSI, thermal and finite-element analysis problems, etc. For instance, a sparse SDD matrix with 40 million unknowns and 180 million nonzeros can be solved (1E-3 accuracy level) within two minutes using a single CPU core and about 6GB memory.