用不同的过完备字典对信号进行尖峰和平滑分离的比较研究

G. Aarthy, P. Amitha, T. Krishnan, G. S. Pillai, V. Sowmya, K. P. Soman
{"title":"用不同的过完备字典对信号进行尖峰和平滑分离的比较研究","authors":"G. Aarthy, P. Amitha, T. Krishnan, G. S. Pillai, V. Sowmya, K. P. Soman","doi":"10.1109/IMAC4S.2013.6526479","DOIUrl":null,"url":null,"abstract":"Most of the natural signals are complex and are highly time varying, since they are non stationary in nature. In this paper, a comparative study for separating spikes and smooth signal components from a non-stationary signal are performed based on different overcomplete dictionaries. The experiment is evaluated using the sparse representation with different bases such as the Discrete Cosine Transform (DCT), Walsh-Hadamard, Orthogonal and Biorthogonal wavelet basis. The primary focus of this paper is to use L1 minimization for retrieving the smooth and spikes component of the signal using different overcomplete dictionary. The experimental results reveals out the dictionary that delivers a better separation without distorting temporal and spectral characteristics.","PeriodicalId":403064,"journal":{"name":"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A comparative study of spike and smooth separation from a signal using different overcomplete dictionary\",\"authors\":\"G. Aarthy, P. Amitha, T. Krishnan, G. S. Pillai, V. Sowmya, K. P. Soman\",\"doi\":\"10.1109/IMAC4S.2013.6526479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the natural signals are complex and are highly time varying, since they are non stationary in nature. In this paper, a comparative study for separating spikes and smooth signal components from a non-stationary signal are performed based on different overcomplete dictionaries. The experiment is evaluated using the sparse representation with different bases such as the Discrete Cosine Transform (DCT), Walsh-Hadamard, Orthogonal and Biorthogonal wavelet basis. The primary focus of this paper is to use L1 minimization for retrieving the smooth and spikes component of the signal using different overcomplete dictionary. The experimental results reveals out the dictionary that delivers a better separation without distorting temporal and spectral characteristics.\",\"PeriodicalId\":403064,\"journal\":{\"name\":\"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMAC4S.2013.6526479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMAC4S.2013.6526479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大多数的自然信号是复杂的,并且是高度时变的,因为它们在本质上是非平稳的。本文基于不同的过完备字典,对从非平稳信号中分离尖峰信号和平滑信号分量进行了比较研究。利用离散余弦变换(DCT)、Walsh-Hadamard、正交和双正交小波基的稀疏表示对实验进行了评价。本文的主要重点是使用L1最小化来检索使用不同的过完备字典的信号的平滑和尖峰分量。实验结果表明,该字典在不影响时间和光谱特性的情况下提供了较好的分离效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of spike and smooth separation from a signal using different overcomplete dictionary
Most of the natural signals are complex and are highly time varying, since they are non stationary in nature. In this paper, a comparative study for separating spikes and smooth signal components from a non-stationary signal are performed based on different overcomplete dictionaries. The experiment is evaluated using the sparse representation with different bases such as the Discrete Cosine Transform (DCT), Walsh-Hadamard, Orthogonal and Biorthogonal wavelet basis. The primary focus of this paper is to use L1 minimization for retrieving the smooth and spikes component of the signal using different overcomplete dictionary. The experimental results reveals out the dictionary that delivers a better separation without distorting temporal and spectral characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信