基于注意力的LSTM-XGBoost混合模型检测心电图心房颤动

Furkan Balci
{"title":"基于注意力的LSTM-XGBoost混合模型检测心电图心房颤动","authors":"Furkan Balci","doi":"10.54287/gujsa.1128006","DOIUrl":null,"url":null,"abstract":"Atrial fibrillation (AF) is a frequently encountered heart arrhythmia problem today. In the method followed in the detection of AF, the recording of the Electrocardiogram (ECG) signal for a long time (1-2 days) taken from people who are thought to be sick is analyzed by the clinician. However, this process is not an effective method for clinicians to make decisions. In this article, various artificial intelligence methods are tested for AF detection on long recorded ECG data. Since the ECG data is a time series, a hybrid model has been tried to be created with the Long Short Term Memory (LSTM) algorithm, which gives high results in time series classification and regression, and a hybrid method has been developed with the Extreme Gradient Boosting algorithm, which is derived from the Gradient Boosting algorithm. To improve the accuracy of the LSTM architecture, the architecture has been strengthened with an Attention-based block. To control the performance of the developed hybrid Attention-based LSTM-XGBoost algorithm, a public data set was used. Some preprocessing (filter, feature extraction) has been applied to this data set used. With the removal of these features, the accuracy rate has increased considerably. It has been proven to be a consistent study that can be used as a support system in decision-making by clinicians with an accuracy rate of 98.94%. It also provides a solution to the problem of long ECG record review by facilitating data tracking.","PeriodicalId":134301,"journal":{"name":"Gazi University Journal of Science Part A: Engineering and Innovation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid Attention-based LSTM-XGBoost Model for Detection of ECG-based Atrial Fibrillation\",\"authors\":\"Furkan Balci\",\"doi\":\"10.54287/gujsa.1128006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atrial fibrillation (AF) is a frequently encountered heart arrhythmia problem today. In the method followed in the detection of AF, the recording of the Electrocardiogram (ECG) signal for a long time (1-2 days) taken from people who are thought to be sick is analyzed by the clinician. However, this process is not an effective method for clinicians to make decisions. In this article, various artificial intelligence methods are tested for AF detection on long recorded ECG data. Since the ECG data is a time series, a hybrid model has been tried to be created with the Long Short Term Memory (LSTM) algorithm, which gives high results in time series classification and regression, and a hybrid method has been developed with the Extreme Gradient Boosting algorithm, which is derived from the Gradient Boosting algorithm. To improve the accuracy of the LSTM architecture, the architecture has been strengthened with an Attention-based block. To control the performance of the developed hybrid Attention-based LSTM-XGBoost algorithm, a public data set was used. Some preprocessing (filter, feature extraction) has been applied to this data set used. With the removal of these features, the accuracy rate has increased considerably. It has been proven to be a consistent study that can be used as a support system in decision-making by clinicians with an accuracy rate of 98.94%. It also provides a solution to the problem of long ECG record review by facilitating data tracking.\",\"PeriodicalId\":134301,\"journal\":{\"name\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54287/gujsa.1128006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gazi University Journal of Science Part A: Engineering and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54287/gujsa.1128006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

心房颤动(AF)是当今常见的心律失常问题。在AF的检测方法中,临床医生对疑似患者长时间(1-2天)的心电图(ECG)信号进行记录分析。然而,这一过程并不是临床医生做出决策的有效方法。在本文中,测试了各种人工智能方法对长期记录的心电数据进行心房颤动检测。针对心电数据是时间序列的特点,尝试用长短期记忆(LSTM)算法建立混合模型,在时间序列分类和回归方面取得了较好的效果,并在梯度增强算法的基础上发展了一种基于极值梯度增强算法的混合方法。为了提高LSTM体系结构的准确性,该体系结构被加强了一个基于注意力的块。为了控制所开发的基于注意力的混合LSTM-XGBoost算法的性能,使用了一个公共数据集。对所使用的数据集进行了预处理(滤波、特征提取)。去除这些特征后,准确率大大提高。已被证明是一个一致性的研究,可以作为临床医生决策的支持系统,准确率为98.94%。同时,通过方便数据跟踪,解决了心电记录审查时间过长的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Attention-based LSTM-XGBoost Model for Detection of ECG-based Atrial Fibrillation
Atrial fibrillation (AF) is a frequently encountered heart arrhythmia problem today. In the method followed in the detection of AF, the recording of the Electrocardiogram (ECG) signal for a long time (1-2 days) taken from people who are thought to be sick is analyzed by the clinician. However, this process is not an effective method for clinicians to make decisions. In this article, various artificial intelligence methods are tested for AF detection on long recorded ECG data. Since the ECG data is a time series, a hybrid model has been tried to be created with the Long Short Term Memory (LSTM) algorithm, which gives high results in time series classification and regression, and a hybrid method has been developed with the Extreme Gradient Boosting algorithm, which is derived from the Gradient Boosting algorithm. To improve the accuracy of the LSTM architecture, the architecture has been strengthened with an Attention-based block. To control the performance of the developed hybrid Attention-based LSTM-XGBoost algorithm, a public data set was used. Some preprocessing (filter, feature extraction) has been applied to this data set used. With the removal of these features, the accuracy rate has increased considerably. It has been proven to be a consistent study that can be used as a support system in decision-making by clinicians with an accuracy rate of 98.94%. It also provides a solution to the problem of long ECG record review by facilitating data tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信