使用主卫星测量的双模GNSS陀螺罗盘

G. Emel’yantsev, A. Stepanov, E. Dranitsyna, B. Blazhnov, D. Radchenko, I. Vinokurov, D. Eliseev, P. Petrov
{"title":"使用主卫星测量的双模GNSS陀螺罗盘","authors":"G. Emel’yantsev, A. Stepanov, E. Dranitsyna, B. Blazhnov, D. Radchenko, I. Vinokurov, D. Eliseev, P. Petrov","doi":"10.23919/ICINS.2018.8405842","DOIUrl":null,"url":null,"abstract":"The paper presents the results of developing an all-latitude tightly-coupled inertial/satellite system, when solving both orientation and navigation problems, under the conditions of limited visibility of navigation satellites (NS). The processed bench test data are presented for the breadboard model of a dual-mode GNSS gyrocompass, with the antenna baseline being about a wavelength, which comprises two GNSS receivers integrated with inertial measurement unit (IMU) on low-accuracy fiber-optic gyros (FOG). Specific feature of GNSS compass consists in arranging the IMU and antenna module on the same rotating platform, setting a timescale of satellite receivers from the same external reference generator, all-latitude high-accuracy determination of heading angle in the presence of at least one visible NS and with its absence, in gyrocompassing mode. The GNSS gyrocompass uses an alternative algorithm of heading determination by phase measurements with simultaneous observation of only one NS, providing 1 deg accuracy. Kinematic parameters of vehicle motion are received using both GPS and GLONASS NS. In GNSS compass the difference phase measurements are generated at the level of the first phase differences. Velocity, position, and phase difference measurements are processed using generalized Kalman filter.","PeriodicalId":243907,"journal":{"name":"2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dual-mode GNSS gyrocompass using primary satellite measurements\",\"authors\":\"G. Emel’yantsev, A. Stepanov, E. Dranitsyna, B. Blazhnov, D. Radchenko, I. Vinokurov, D. Eliseev, P. Petrov\",\"doi\":\"10.23919/ICINS.2018.8405842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the results of developing an all-latitude tightly-coupled inertial/satellite system, when solving both orientation and navigation problems, under the conditions of limited visibility of navigation satellites (NS). The processed bench test data are presented for the breadboard model of a dual-mode GNSS gyrocompass, with the antenna baseline being about a wavelength, which comprises two GNSS receivers integrated with inertial measurement unit (IMU) on low-accuracy fiber-optic gyros (FOG). Specific feature of GNSS compass consists in arranging the IMU and antenna module on the same rotating platform, setting a timescale of satellite receivers from the same external reference generator, all-latitude high-accuracy determination of heading angle in the presence of at least one visible NS and with its absence, in gyrocompassing mode. The GNSS gyrocompass uses an alternative algorithm of heading determination by phase measurements with simultaneous observation of only one NS, providing 1 deg accuracy. Kinematic parameters of vehicle motion are received using both GPS and GLONASS NS. In GNSS compass the difference phase measurements are generated at the level of the first phase differences. Velocity, position, and phase difference measurements are processed using generalized Kalman filter.\",\"PeriodicalId\":243907,\"journal\":{\"name\":\"2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICINS.2018.8405842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICINS.2018.8405842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了在导航卫星能见度有限的情况下,开发一种全纬度紧密耦合惯性/卫星系统解决定位和导航问题的结果。给出了一种双模GNSS陀螺罗经的面包板模型的台架试验数据,该模型的天线基线约为一个波长,该模型由两个GNSS接收机和惯性测量单元(IMU)集成在低精度光纤陀螺(FOG)上。GNSS罗经的具体特点是将IMU和天线模块放置在同一旋转平台上,设置来自同一外部参考发生器的卫星接收机的时间标度,在至少有一个可见NS存在和没有可见NS的情况下,以陀螺罗经模式全纬度高精度确定航向角。GNSS陀螺罗经采用另一种算法,通过相位测量确定航向,同时只观察一个NS,提供1度精度。同时利用GPS和GLONASS NS接收车辆运动的运动学参数。在GNSS罗盘中,差相位测量是在第一相位差的水平上产生的。速度、位置和相位差测量使用广义卡尔曼滤波处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-mode GNSS gyrocompass using primary satellite measurements
The paper presents the results of developing an all-latitude tightly-coupled inertial/satellite system, when solving both orientation and navigation problems, under the conditions of limited visibility of navigation satellites (NS). The processed bench test data are presented for the breadboard model of a dual-mode GNSS gyrocompass, with the antenna baseline being about a wavelength, which comprises two GNSS receivers integrated with inertial measurement unit (IMU) on low-accuracy fiber-optic gyros (FOG). Specific feature of GNSS compass consists in arranging the IMU and antenna module on the same rotating platform, setting a timescale of satellite receivers from the same external reference generator, all-latitude high-accuracy determination of heading angle in the presence of at least one visible NS and with its absence, in gyrocompassing mode. The GNSS gyrocompass uses an alternative algorithm of heading determination by phase measurements with simultaneous observation of only one NS, providing 1 deg accuracy. Kinematic parameters of vehicle motion are received using both GPS and GLONASS NS. In GNSS compass the difference phase measurements are generated at the level of the first phase differences. Velocity, position, and phase difference measurements are processed using generalized Kalman filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信