Dongjoo Shin, Jinmook Lee, Jinsu Lee, Juhyoung Lee, H. Yoo
{"title":"面向卷积神经网络和递归神经网络的高效异构多核深度学习处理器","authors":"Dongjoo Shin, Jinmook Lee, Jinsu Lee, Juhyoung Lee, H. Yoo","doi":"10.1109/CoolChips.2017.7946376","DOIUrl":null,"url":null,"abstract":"An energy-efficient deep learning processor is proposed for convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in mobile platforms. The 16mm2 chip is fabricated using 65nm technology with 3 key features, 1) Reconfigurable heterogeneous architecture to support both CNNs and RNNs, 2) LUT-based reconfigurable multiplier optimized for dynamic fixed-point with the on-line adaptation, 3) Quantization table-based matrix multiplication to reduce off-chip memory access and remove duplicated multiplications. As a result, compared to the [2] and [3], this work shows 20× and 4.5× higher energy efficiency, respectively. Also, DNPU shows 6.5× higher energy efficiency compared to the [5].","PeriodicalId":439955,"journal":{"name":"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An energy-efficient deep learning processor with heterogeneous multi-core architecture for convolutional neural networks and recurrent neural networks\",\"authors\":\"Dongjoo Shin, Jinmook Lee, Jinsu Lee, Juhyoung Lee, H. Yoo\",\"doi\":\"10.1109/CoolChips.2017.7946376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An energy-efficient deep learning processor is proposed for convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in mobile platforms. The 16mm2 chip is fabricated using 65nm technology with 3 key features, 1) Reconfigurable heterogeneous architecture to support both CNNs and RNNs, 2) LUT-based reconfigurable multiplier optimized for dynamic fixed-point with the on-line adaptation, 3) Quantization table-based matrix multiplication to reduce off-chip memory access and remove duplicated multiplications. As a result, compared to the [2] and [3], this work shows 20× and 4.5× higher energy efficiency, respectively. Also, DNPU shows 6.5× higher energy efficiency compared to the [5].\",\"PeriodicalId\":439955,\"journal\":{\"name\":\"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoolChips.2017.7946376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoolChips.2017.7946376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An energy-efficient deep learning processor with heterogeneous multi-core architecture for convolutional neural networks and recurrent neural networks
An energy-efficient deep learning processor is proposed for convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in mobile platforms. The 16mm2 chip is fabricated using 65nm technology with 3 key features, 1) Reconfigurable heterogeneous architecture to support both CNNs and RNNs, 2) LUT-based reconfigurable multiplier optimized for dynamic fixed-point with the on-line adaptation, 3) Quantization table-based matrix multiplication to reduce off-chip memory access and remove duplicated multiplications. As a result, compared to the [2] and [3], this work shows 20× and 4.5× higher energy efficiency, respectively. Also, DNPU shows 6.5× higher energy efficiency compared to the [5].