面向卷积神经网络和递归神经网络的高效异构多核深度学习处理器

Dongjoo Shin, Jinmook Lee, Jinsu Lee, Juhyoung Lee, H. Yoo
{"title":"面向卷积神经网络和递归神经网络的高效异构多核深度学习处理器","authors":"Dongjoo Shin, Jinmook Lee, Jinsu Lee, Juhyoung Lee, H. Yoo","doi":"10.1109/CoolChips.2017.7946376","DOIUrl":null,"url":null,"abstract":"An energy-efficient deep learning processor is proposed for convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in mobile platforms. The 16mm2 chip is fabricated using 65nm technology with 3 key features, 1) Reconfigurable heterogeneous architecture to support both CNNs and RNNs, 2) LUT-based reconfigurable multiplier optimized for dynamic fixed-point with the on-line adaptation, 3) Quantization table-based matrix multiplication to reduce off-chip memory access and remove duplicated multiplications. As a result, compared to the [2] and [3], this work shows 20× and 4.5× higher energy efficiency, respectively. Also, DNPU shows 6.5× higher energy efficiency compared to the [5].","PeriodicalId":439955,"journal":{"name":"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An energy-efficient deep learning processor with heterogeneous multi-core architecture for convolutional neural networks and recurrent neural networks\",\"authors\":\"Dongjoo Shin, Jinmook Lee, Jinsu Lee, Juhyoung Lee, H. Yoo\",\"doi\":\"10.1109/CoolChips.2017.7946376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An energy-efficient deep learning processor is proposed for convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in mobile platforms. The 16mm2 chip is fabricated using 65nm technology with 3 key features, 1) Reconfigurable heterogeneous architecture to support both CNNs and RNNs, 2) LUT-based reconfigurable multiplier optimized for dynamic fixed-point with the on-line adaptation, 3) Quantization table-based matrix multiplication to reduce off-chip memory access and remove duplicated multiplications. As a result, compared to the [2] and [3], this work shows 20× and 4.5× higher energy efficiency, respectively. Also, DNPU shows 6.5× higher energy efficiency compared to the [5].\",\"PeriodicalId\":439955,\"journal\":{\"name\":\"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoolChips.2017.7946376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoolChips.2017.7946376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

针对移动平台上的卷积神经网络(cnn)和递归神经网络(rnn),提出了一种节能的深度学习处理器。该16mm2芯片采用65nm工艺制造,具有3个主要特点:1)可重构异构架构,支持cnn和rnn; 2)基于lut的可重构乘法器,通过在线自适应优化动态定点;3)基于量化表的矩阵乘法,减少片外存储访问,消除重复乘法。因此,与[2]和[3]相比,本工作的能效分别提高了20倍和4.5倍。此外,DNPU的能源效率比[5]高出6.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An energy-efficient deep learning processor with heterogeneous multi-core architecture for convolutional neural networks and recurrent neural networks
An energy-efficient deep learning processor is proposed for convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in mobile platforms. The 16mm2 chip is fabricated using 65nm technology with 3 key features, 1) Reconfigurable heterogeneous architecture to support both CNNs and RNNs, 2) LUT-based reconfigurable multiplier optimized for dynamic fixed-point with the on-line adaptation, 3) Quantization table-based matrix multiplication to reduce off-chip memory access and remove duplicated multiplications. As a result, compared to the [2] and [3], this work shows 20× and 4.5× higher energy efficiency, respectively. Also, DNPU shows 6.5× higher energy efficiency compared to the [5].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信