基于并行径向基函数神经网络的应急分析快速电压估计

T. Jain, L. Srivastava, S.N. Singh, A. Jain
{"title":"基于并行径向基函数神经网络的应急分析快速电压估计","authors":"T. Jain, L. Srivastava, S.N. Singh, A. Jain","doi":"10.1109/DRPT.2004.1338088","DOIUrl":null,"url":null,"abstract":"Estimation of bus voltage magnitudes under normal and contingency cases are very important for secure operation of power system. A novel parallel radial basis function neural network (PRBFN) is suggested to predict bus voltage magnitudes in an efficient manner. Proposed parallel radial basis function neural network is a multistage network, in which stages operate in parallel rather than in series during testing. The nonlinear mapping capability of radial basis function has been exploited along with forward-backward training. The input features for PRBFN are selected using entropy concept to reduce the dimension of inputs as well as size of the neural network. The proposed method is used to predict bus voltage magnitudes at different loading as well as generating conditions and for single line outages of IEEE-14 bus system. A single PRBFN has been trained to predict voltage at all the PQ buses for the base case as well as for the line outages.","PeriodicalId":427228,"journal":{"name":"2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies. Proceedings","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Parallel radial basis function neural network based fast voltage estimation for contingency analysis\",\"authors\":\"T. Jain, L. Srivastava, S.N. Singh, A. Jain\",\"doi\":\"10.1109/DRPT.2004.1338088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of bus voltage magnitudes under normal and contingency cases are very important for secure operation of power system. A novel parallel radial basis function neural network (PRBFN) is suggested to predict bus voltage magnitudes in an efficient manner. Proposed parallel radial basis function neural network is a multistage network, in which stages operate in parallel rather than in series during testing. The nonlinear mapping capability of radial basis function has been exploited along with forward-backward training. The input features for PRBFN are selected using entropy concept to reduce the dimension of inputs as well as size of the neural network. The proposed method is used to predict bus voltage magnitudes at different loading as well as generating conditions and for single line outages of IEEE-14 bus system. A single PRBFN has been trained to predict voltage at all the PQ buses for the base case as well as for the line outages.\",\"PeriodicalId\":427228,\"journal\":{\"name\":\"2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies. Proceedings\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRPT.2004.1338088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRPT.2004.1338088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

正常和突发情况下母线电压值的估计对电力系统的安全运行具有重要意义。提出了一种新的并联径向基函数神经网络(PRBFN),可有效地预测母线电压幅值。所提出的并联径向基函数神经网络是一种多级网络,在测试过程中各阶段是并联运行而不是串联运行。利用径向基函数的非线性映射能力,进行正向-后向训练。利用熵的概念选择PRBFN的输入特征,降低输入的维数和神经网络的大小。将该方法用于预测IEEE-14母线系统在不同负荷、不同发电条件下的母线电压值以及单线停电情况。一个单一的PRBFN已经被训练来预测基本情况下所有PQ总线的电压以及线路中断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel radial basis function neural network based fast voltage estimation for contingency analysis
Estimation of bus voltage magnitudes under normal and contingency cases are very important for secure operation of power system. A novel parallel radial basis function neural network (PRBFN) is suggested to predict bus voltage magnitudes in an efficient manner. Proposed parallel radial basis function neural network is a multistage network, in which stages operate in parallel rather than in series during testing. The nonlinear mapping capability of radial basis function has been exploited along with forward-backward training. The input features for PRBFN are selected using entropy concept to reduce the dimension of inputs as well as size of the neural network. The proposed method is used to predict bus voltage magnitudes at different loading as well as generating conditions and for single line outages of IEEE-14 bus system. A single PRBFN has been trained to predict voltage at all the PQ buses for the base case as well as for the line outages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信