插值数据的切比雪夫展开函数与幂级数展开函数的比较

S. Chakravorty, S. Min, M. Swaminathan
{"title":"插值数据的切比雪夫展开函数与幂级数展开函数的比较","authors":"S. Chakravorty, S. Min, M. Swaminathan","doi":"10.1109/EPEP.2001.967634","DOIUrl":null,"url":null,"abstract":"A study is made of the relative advantages and disadvantages of using power series and Chebyshev polynomials to obtain a rational function representation of the data. This rational function must satisfy both the stability and passivity criteria. The procedures used for obtaining the rational function representation using both Chebyshev polynomials and power series is outlined in the paper. Three test cases have been used to compare the relative performance of the power series and Chebyshev polynomials.","PeriodicalId":174339,"journal":{"name":"IEEE 10th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No. 01TH8565)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparison between Chebyshev and power series expansion functions for interpolating data\",\"authors\":\"S. Chakravorty, S. Min, M. Swaminathan\",\"doi\":\"10.1109/EPEP.2001.967634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study is made of the relative advantages and disadvantages of using power series and Chebyshev polynomials to obtain a rational function representation of the data. This rational function must satisfy both the stability and passivity criteria. The procedures used for obtaining the rational function representation using both Chebyshev polynomials and power series is outlined in the paper. Three test cases have been used to compare the relative performance of the power series and Chebyshev polynomials.\",\"PeriodicalId\":174339,\"journal\":{\"name\":\"IEEE 10th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No. 01TH8565)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 10th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No. 01TH8565)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEP.2001.967634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 10th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No. 01TH8565)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEP.2001.967634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了幂级数和切比雪夫多项式在数据的合理函数表示中的优缺点。该有理函数必须同时满足稳定性和无源性准则。本文概述了利用切比雪夫多项式和幂级数获得有理函数表示的方法。用三个测试用例比较了幂级数和切比雪夫多项式的相对性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison between Chebyshev and power series expansion functions for interpolating data
A study is made of the relative advantages and disadvantages of using power series and Chebyshev polynomials to obtain a rational function representation of the data. This rational function must satisfy both the stability and passivity criteria. The procedures used for obtaining the rational function representation using both Chebyshev polynomials and power series is outlined in the paper. Three test cases have been used to compare the relative performance of the power series and Chebyshev polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信