复杂三维几何图形电容提取的快速多极子算法

K. Nabors, Jacob K. White
{"title":"复杂三维几何图形电容提取的快速多极子算法","authors":"K. Nabors, Jacob K. White","doi":"10.1109/CICC.1989.56806","DOIUrl":null,"url":null,"abstract":"A fast algorithm for computing the capacitance of a complicated 3-D geometry of ideal conductors in a uniform dielectric is described. The method is an acceleration of the standard integral-equation for multiconductor capacitance extraction. These integral-equation methods are slow because they lead to dense matrix problems which are typically solved with some form of Gaussian elimination. This implies that the computation grows like n3, where n is the number of tiles needed to accuracy-discretize the conductor surface charges. The authors present a preconditioned conjugate-gradient iterative algorithm with a multipole approximation to compute the iterates. This reduces the complexity so that accurate multiconductor capacitance calculations grow as nm, where m is the number of conductors","PeriodicalId":165054,"journal":{"name":"1989 Proceedings of the IEEE Custom Integrated Circuits Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A fast multipole algorithm for capacitance extraction of complex 3-D geometries\",\"authors\":\"K. Nabors, Jacob K. White\",\"doi\":\"10.1109/CICC.1989.56806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast algorithm for computing the capacitance of a complicated 3-D geometry of ideal conductors in a uniform dielectric is described. The method is an acceleration of the standard integral-equation for multiconductor capacitance extraction. These integral-equation methods are slow because they lead to dense matrix problems which are typically solved with some form of Gaussian elimination. This implies that the computation grows like n3, where n is the number of tiles needed to accuracy-discretize the conductor surface charges. The authors present a preconditioned conjugate-gradient iterative algorithm with a multipole approximation to compute the iterates. This reduces the complexity so that accurate multiconductor capacitance calculations grow as nm, where m is the number of conductors\",\"PeriodicalId\":165054,\"journal\":{\"name\":\"1989 Proceedings of the IEEE Custom Integrated Circuits Conference\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1989 Proceedings of the IEEE Custom Integrated Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.1989.56806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 Proceedings of the IEEE Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.1989.56806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

描述了一种计算均匀介质中理想导体复杂三维几何结构电容的快速算法。该方法是多导体电容提取标准积分方程的加速。这些积分方程方法是缓慢的,因为它们导致密集矩阵问题,通常用某种形式的高斯消去来解决。这意味着计算像n3一样增长,其中n是精确离散导体表面电荷所需的瓦片数。提出了一种基于多极逼近的预条件共轭梯度迭代算法。这降低了复杂性,因此精确的多导体电容计算以nm增长,其中m是导体的数量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast multipole algorithm for capacitance extraction of complex 3-D geometries
A fast algorithm for computing the capacitance of a complicated 3-D geometry of ideal conductors in a uniform dielectric is described. The method is an acceleration of the standard integral-equation for multiconductor capacitance extraction. These integral-equation methods are slow because they lead to dense matrix problems which are typically solved with some form of Gaussian elimination. This implies that the computation grows like n3, where n is the number of tiles needed to accuracy-discretize the conductor surface charges. The authors present a preconditioned conjugate-gradient iterative algorithm with a multipole approximation to compute the iterates. This reduces the complexity so that accurate multiconductor capacitance calculations grow as nm, where m is the number of conductors
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信