一种新型双集成NMOS反导soi - light增强反向回收

Ajiang Li, Shaohong Li, Long Zhang, Jing Zhu, Tian Tian, Yanqin Zou, Guichuang Zhu, Weifeng Sun
{"title":"一种新型双集成NMOS反导soi - light增强反向回收","authors":"Ajiang Li, Shaohong Li, Long Zhang, Jing Zhu, Tian Tian, Yanqin Zou, Guichuang Zhu, Weifeng Sun","doi":"10.1109/IPFA47161.2019.8984816","DOIUrl":null,"url":null,"abstract":"The reverse recovery failure of the inherent diode in Separated-Shorted-Anode lateral insulated gate bipolar transistor (SSA-LIGBT) is investigated through Sentaurus TCAD. During reverse recovery process, high current commutating rate di/dt will result in large reverse recovery current peak. It is found that large reverse recovery current peak flowing through the P-body can easily trigger the parasitic NPN transistor at the emitter side. Subsequently, the triggered NPN transistor finally results in the reverse recovery failure of the inherent diode in SSA-LIGBT. A novel structure with double integrated NMOS is proposed to achieve high reverse recovery robustness. Furthermore, the new structure can eliminate Negative Differential Resistance regime completely at the same time.","PeriodicalId":169775,"journal":{"name":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Reverse Conducting SOI-LIGBT with Double Integrated NMOS for Enhanced Reverse Recovery\",\"authors\":\"Ajiang Li, Shaohong Li, Long Zhang, Jing Zhu, Tian Tian, Yanqin Zou, Guichuang Zhu, Weifeng Sun\",\"doi\":\"10.1109/IPFA47161.2019.8984816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reverse recovery failure of the inherent diode in Separated-Shorted-Anode lateral insulated gate bipolar transistor (SSA-LIGBT) is investigated through Sentaurus TCAD. During reverse recovery process, high current commutating rate di/dt will result in large reverse recovery current peak. It is found that large reverse recovery current peak flowing through the P-body can easily trigger the parasitic NPN transistor at the emitter side. Subsequently, the triggered NPN transistor finally results in the reverse recovery failure of the inherent diode in SSA-LIGBT. A novel structure with double integrated NMOS is proposed to achieve high reverse recovery robustness. Furthermore, the new structure can eliminate Negative Differential Resistance regime completely at the same time.\",\"PeriodicalId\":169775,\"journal\":{\"name\":\"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA47161.2019.8984816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA47161.2019.8984816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用Sentaurus TCAD研究了分离短阳极侧绝缘栅双极晶体管(ssa - light)固有二极管的反向恢复故障。在反向恢复过程中,高电流换流率di/dt将导致较大的反向恢复电流峰值。研究发现,较大的反向恢复电流峰流过p体时,很容易触发发射极侧的寄生NPN晶体管。随后,触发的NPN晶体管最终导致ssa - light中固有二极管反向恢复失败。提出了一种双集成NMOS结构,实现了较高的反向恢复鲁棒性。此外,新结构可以完全消除负差分电阻状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Reverse Conducting SOI-LIGBT with Double Integrated NMOS for Enhanced Reverse Recovery
The reverse recovery failure of the inherent diode in Separated-Shorted-Anode lateral insulated gate bipolar transistor (SSA-LIGBT) is investigated through Sentaurus TCAD. During reverse recovery process, high current commutating rate di/dt will result in large reverse recovery current peak. It is found that large reverse recovery current peak flowing through the P-body can easily trigger the parasitic NPN transistor at the emitter side. Subsequently, the triggered NPN transistor finally results in the reverse recovery failure of the inherent diode in SSA-LIGBT. A novel structure with double integrated NMOS is proposed to achieve high reverse recovery robustness. Furthermore, the new structure can eliminate Negative Differential Resistance regime completely at the same time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信