Ricardo Trejo-Calzada, A. Pedroza-Sandoval, J. Arreola-Ávila, Fabián García-González
{"title":"干旱地区的原生植物:耐旱作物的基因库","authors":"Ricardo Trejo-Calzada, A. Pedroza-Sandoval, J. Arreola-Ávila, Fabián García-González","doi":"10.5772/INTECHOPEN.86485","DOIUrl":null,"url":null,"abstract":"Droughts are common in arid areas. These cause important losses in crop production, while the increasing population demands more food and goods. Cultivars able to produce under drought conditions are required to avoid or reduce production losses. Plants have evolved different mechanisms to face drought, and many genes have been already discovered in model and cultivated plants that are involved in this trait. Some of these genes have been successfully transformed into cultivated plants for drought tolerance. Plants native to arid lands may possess variants of drought tolerance mechanisms as compared to mesophytic or model plants. Also, different drought-related genes can be revealed. Studies using high-throughput and bioinformatic tools may allow to discover new genes and give new insights on the mechanisms involved in drought tolerance. However, still scarce studies in plants native to arid lands show that there are many drought-related genes that have not been already characterized and potentially they may be novel genes. These novel genes may be used to improve crops for drought tolerance. Therefore, more physiological, transcriptomic, proteomic, and metabolomic studies are needed on plants native to the deserts.","PeriodicalId":443029,"journal":{"name":"Drought - Detection and Solutions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Native Plants to Arid Areas: A Genetic Reservoir for Drought-Tolerant Crops\",\"authors\":\"Ricardo Trejo-Calzada, A. Pedroza-Sandoval, J. Arreola-Ávila, Fabián García-González\",\"doi\":\"10.5772/INTECHOPEN.86485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Droughts are common in arid areas. These cause important losses in crop production, while the increasing population demands more food and goods. Cultivars able to produce under drought conditions are required to avoid or reduce production losses. Plants have evolved different mechanisms to face drought, and many genes have been already discovered in model and cultivated plants that are involved in this trait. Some of these genes have been successfully transformed into cultivated plants for drought tolerance. Plants native to arid lands may possess variants of drought tolerance mechanisms as compared to mesophytic or model plants. Also, different drought-related genes can be revealed. Studies using high-throughput and bioinformatic tools may allow to discover new genes and give new insights on the mechanisms involved in drought tolerance. However, still scarce studies in plants native to arid lands show that there are many drought-related genes that have not been already characterized and potentially they may be novel genes. These novel genes may be used to improve crops for drought tolerance. Therefore, more physiological, transcriptomic, proteomic, and metabolomic studies are needed on plants native to the deserts.\",\"PeriodicalId\":443029,\"journal\":{\"name\":\"Drought - Detection and Solutions\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drought - Detection and Solutions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.86485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drought - Detection and Solutions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.86485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Native Plants to Arid Areas: A Genetic Reservoir for Drought-Tolerant Crops
Droughts are common in arid areas. These cause important losses in crop production, while the increasing population demands more food and goods. Cultivars able to produce under drought conditions are required to avoid or reduce production losses. Plants have evolved different mechanisms to face drought, and many genes have been already discovered in model and cultivated plants that are involved in this trait. Some of these genes have been successfully transformed into cultivated plants for drought tolerance. Plants native to arid lands may possess variants of drought tolerance mechanisms as compared to mesophytic or model plants. Also, different drought-related genes can be revealed. Studies using high-throughput and bioinformatic tools may allow to discover new genes and give new insights on the mechanisms involved in drought tolerance. However, still scarce studies in plants native to arid lands show that there are many drought-related genes that have not been already characterized and potentially they may be novel genes. These novel genes may be used to improve crops for drought tolerance. Therefore, more physiological, transcriptomic, proteomic, and metabolomic studies are needed on plants native to the deserts.