基于粒子群优化技术的并网直流混合微电网能量管理策略

Abdel-Aziz Salem, A. El-Shenawy, M. Hamad
{"title":"基于粒子群优化技术的并网直流混合微电网能量管理策略","authors":"Abdel-Aziz Salem, A. El-Shenawy, M. Hamad","doi":"10.1109/ICM50269.2020.9331823","DOIUrl":null,"url":null,"abstract":"Energy management for micro-grids is a vital issue for the control system. Proper control system should fulfill load demands and ensure system stability with the minimum cost. This paper presents an energy management strategy (EMS) for grid connected DC hybrid micro-grid with cost minimization while considering the dynamics of renewable sources. Modified particle swarm optimization (MPSO) is used to solve the energy management optimization problem. Genetic algorithm (GA) is also used to compare the MPSO result. Hierarchical control is used to combine MPSO with the energy management strategy to enhance MPSO performance and achieve optimum efficiency.","PeriodicalId":243968,"journal":{"name":"2020 32nd International Conference on Microelectronics (ICM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy Management Strategy For Grid Connected DC Hybrid Micro Grid Using Particle Swarm Optimization Technique\",\"authors\":\"Abdel-Aziz Salem, A. El-Shenawy, M. Hamad\",\"doi\":\"10.1109/ICM50269.2020.9331823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy management for micro-grids is a vital issue for the control system. Proper control system should fulfill load demands and ensure system stability with the minimum cost. This paper presents an energy management strategy (EMS) for grid connected DC hybrid micro-grid with cost minimization while considering the dynamics of renewable sources. Modified particle swarm optimization (MPSO) is used to solve the energy management optimization problem. Genetic algorithm (GA) is also used to compare the MPSO result. Hierarchical control is used to combine MPSO with the energy management strategy to enhance MPSO performance and achieve optimum efficiency.\",\"PeriodicalId\":243968,\"journal\":{\"name\":\"2020 32nd International Conference on Microelectronics (ICM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 32nd International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM50269.2020.9331823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 32nd International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM50269.2020.9331823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

微电网的能量管理是控制系统的关键问题。合适的控制系统应以最小的成本满足负荷需求,保证系统稳定。考虑可再生能源的动态特性,提出了一种成本最小化的并网直流混合微电网能量管理策略。采用改进粒子群算法(MPSO)求解能源管理优化问题。采用遗传算法(GA)对MPSO结果进行比较。采用分层控制将MPSO与能量管理策略相结合,提高MPSO的性能,达到最优效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Management Strategy For Grid Connected DC Hybrid Micro Grid Using Particle Swarm Optimization Technique
Energy management for micro-grids is a vital issue for the control system. Proper control system should fulfill load demands and ensure system stability with the minimum cost. This paper presents an energy management strategy (EMS) for grid connected DC hybrid micro-grid with cost minimization while considering the dynamics of renewable sources. Modified particle swarm optimization (MPSO) is used to solve the energy management optimization problem. Genetic algorithm (GA) is also used to compare the MPSO result. Hierarchical control is used to combine MPSO with the energy management strategy to enhance MPSO performance and achieve optimum efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信