长期短路应力下SiC功率mosfet的退化机理及优化研究

Jiaxing Wei, Siyang Liu, Jiong Fang, Sheng Li, Ting Li, Weifeng Sun
{"title":"长期短路应力下SiC功率mosfet的退化机理及优化研究","authors":"Jiaxing Wei, Siyang Liu, Jiong Fang, Sheng Li, Ting Li, Weifeng Sun","doi":"10.1109/ISPSD.2018.8393687","DOIUrl":null,"url":null,"abstract":"In this paper, the degradation mechanism of silicon carbide (SiC) power metal-oxide-semiconductor field-effect transistors (MOSFETs) under long-term short-circuit (SC) stress is investigated. With the help of Silvaco TCAD simulations and measurements on degraded parameters, the injection of electrons into gate oxide above channel region of the device is demonstrated to be the dominant degradation mechanism. It results in the positive shift of threshold voltage (Vth) and the increase of on-state resistance (Rdson) under low gate voltage bias condition. Simulated electrical properties of the device with electrons trapped into gate oxide above channel region share similar degradation trend with measured ones, proving the correctness of our analysis. Furthermore, an improved device structure with an additional shallow inverted-doping p-well, which can effectively lower the impact ionization rate (I.I.) along the SiC/SiO2 interface above channel region during SC process, is proposed to restrict the degradations under long-term SC stress.","PeriodicalId":166809,"journal":{"name":"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Investigation on degradation mechanism and optimization for SiC power MOSFETs under long-term short-circuit stress\",\"authors\":\"Jiaxing Wei, Siyang Liu, Jiong Fang, Sheng Li, Ting Li, Weifeng Sun\",\"doi\":\"10.1109/ISPSD.2018.8393687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the degradation mechanism of silicon carbide (SiC) power metal-oxide-semiconductor field-effect transistors (MOSFETs) under long-term short-circuit (SC) stress is investigated. With the help of Silvaco TCAD simulations and measurements on degraded parameters, the injection of electrons into gate oxide above channel region of the device is demonstrated to be the dominant degradation mechanism. It results in the positive shift of threshold voltage (Vth) and the increase of on-state resistance (Rdson) under low gate voltage bias condition. Simulated electrical properties of the device with electrons trapped into gate oxide above channel region share similar degradation trend with measured ones, proving the correctness of our analysis. Furthermore, an improved device structure with an additional shallow inverted-doping p-well, which can effectively lower the impact ionization rate (I.I.) along the SiC/SiO2 interface above channel region during SC process, is proposed to restrict the degradations under long-term SC stress.\",\"PeriodicalId\":166809,\"journal\":{\"name\":\"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.2018.8393687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2018.8393687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了碳化硅(SiC)功率金属氧化物半导体场效应晶体管(mosfet)在长期短路(SC)应力作用下的劣化机理。通过Silvaco TCAD仿真和对降解参数的测量,证明了电子注入器件沟道上方栅极氧化物是主要的降解机制。在低栅极电压偏置条件下,导致阈值电压(Vth)正移,导通电阻(Rdson)增大。当电子被困在通道上方的栅极氧化物中时,模拟的电学性能与测量的电学性能有相似的下降趋势,证明了分析的正确性。此外,提出了一种改进的器件结构,增加了一个浅反转掺杂p阱,可以有效地降低SC过程中沿通道区域上方SiC/SiO2界面的冲击电离率(I.I.),以限制长期SC应力下的降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation on degradation mechanism and optimization for SiC power MOSFETs under long-term short-circuit stress
In this paper, the degradation mechanism of silicon carbide (SiC) power metal-oxide-semiconductor field-effect transistors (MOSFETs) under long-term short-circuit (SC) stress is investigated. With the help of Silvaco TCAD simulations and measurements on degraded parameters, the injection of electrons into gate oxide above channel region of the device is demonstrated to be the dominant degradation mechanism. It results in the positive shift of threshold voltage (Vth) and the increase of on-state resistance (Rdson) under low gate voltage bias condition. Simulated electrical properties of the device with electrons trapped into gate oxide above channel region share similar degradation trend with measured ones, proving the correctness of our analysis. Furthermore, an improved device structure with an additional shallow inverted-doping p-well, which can effectively lower the impact ionization rate (I.I.) along the SiC/SiO2 interface above channel region during SC process, is proposed to restrict the degradations under long-term SC stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信