{"title":"有限通信资源下数据驱动的状态估计","authors":"Duo Han","doi":"10.1109/ICMIC.2014.7020751","DOIUrl":null,"url":null,"abstract":"Remote state estimation in networked control systems always consumes too much sensor battery power and communication bandwidth. Under power and communication constraint, we seek a desirable tradeoff between communication rate and estimation performance in terms of estimation error covariance. We propose two data-driven sensor scheduling strategies to achieve that goal. We prove that under our strategies the minimum mean squared error (MMSE) estimator is a Kalmanlike filter which maintains linearity. We give the explicit MMSE estimator under each strategy. In the end we conduct numerical experiment to show the superiority of our design.","PeriodicalId":405363,"journal":{"name":"Proceedings of 2014 International Conference on Modelling, Identification & Control","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data-driven state estimation under limited communication resources\",\"authors\":\"Duo Han\",\"doi\":\"10.1109/ICMIC.2014.7020751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote state estimation in networked control systems always consumes too much sensor battery power and communication bandwidth. Under power and communication constraint, we seek a desirable tradeoff between communication rate and estimation performance in terms of estimation error covariance. We propose two data-driven sensor scheduling strategies to achieve that goal. We prove that under our strategies the minimum mean squared error (MMSE) estimator is a Kalmanlike filter which maintains linearity. We give the explicit MMSE estimator under each strategy. In the end we conduct numerical experiment to show the superiority of our design.\",\"PeriodicalId\":405363,\"journal\":{\"name\":\"Proceedings of 2014 International Conference on Modelling, Identification & Control\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2014 International Conference on Modelling, Identification & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIC.2014.7020751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 International Conference on Modelling, Identification & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2014.7020751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-driven state estimation under limited communication resources
Remote state estimation in networked control systems always consumes too much sensor battery power and communication bandwidth. Under power and communication constraint, we seek a desirable tradeoff between communication rate and estimation performance in terms of estimation error covariance. We propose two data-driven sensor scheduling strategies to achieve that goal. We prove that under our strategies the minimum mean squared error (MMSE) estimator is a Kalmanlike filter which maintains linearity. We give the explicit MMSE estimator under each strategy. In the end we conduct numerical experiment to show the superiority of our design.