在半导体器件的确定性玻尔兹曼方程求解器中包含泡利原理

Sung-Min Hong, C. Jungemann
{"title":"在半导体器件的确定性玻尔兹曼方程求解器中包含泡利原理","authors":"Sung-Min Hong, C. Jungemann","doi":"10.1109/SISPAD.2010.5604547","DOIUrl":null,"url":null,"abstract":"The Pauli principle is included in a deterministic Boltzmann solver for multi-dimensional semiconductor devices. The Newton-Raphson scheme is applied to solve the nonlinear Boltzmann equation, and it is found that the inclusion of the Pauli principle introduces no numerical problems, even for semiconductor devices. The impact of the Pauli principle is numerically investigated for a scaled SiGe HBT.","PeriodicalId":331098,"journal":{"name":"2010 International Conference on Simulation of Semiconductor Processes and Devices","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Inclusion of the Pauli principle in a deterministic Boltzmann equation solver for semiconductor devices\",\"authors\":\"Sung-Min Hong, C. Jungemann\",\"doi\":\"10.1109/SISPAD.2010.5604547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Pauli principle is included in a deterministic Boltzmann solver for multi-dimensional semiconductor devices. The Newton-Raphson scheme is applied to solve the nonlinear Boltzmann equation, and it is found that the inclusion of the Pauli principle introduces no numerical problems, even for semiconductor devices. The impact of the Pauli principle is numerically investigated for a scaled SiGe HBT.\",\"PeriodicalId\":331098,\"journal\":{\"name\":\"2010 International Conference on Simulation of Semiconductor Processes and Devices\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Simulation of Semiconductor Processes and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2010.5604547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Simulation of Semiconductor Processes and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2010.5604547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

泡利原理包括在一个确定性的玻尔兹曼求解器的多维半导体器件。应用牛顿-拉夫森格式求解非线性玻尔兹曼方程,发现包含泡利原理不会引入数值问题,即使对于半导体器件也是如此。数值研究了泡利原理对尺度SiGe HBT的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inclusion of the Pauli principle in a deterministic Boltzmann equation solver for semiconductor devices
The Pauli principle is included in a deterministic Boltzmann solver for multi-dimensional semiconductor devices. The Newton-Raphson scheme is applied to solve the nonlinear Boltzmann equation, and it is found that the inclusion of the Pauli principle introduces no numerical problems, even for semiconductor devices. The impact of the Pauli principle is numerically investigated for a scaled SiGe HBT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信