{"title":"基于点云的机器人弧焊自动坡口检测与轨迹生成方法","authors":"Rui Peng, D. Navarro-Alarcon, Victor Wu, Wen Yang","doi":"10.1109/UR49135.2020.9144861","DOIUrl":null,"url":null,"abstract":"In this paper, in order to pursue high-efficiency robotic arc welding tasks, we propose a method based on point cloud acquired by an RGB-D sensor. The method consists of two parts: welding groove detection and 3D welding trajectory generation. The actual welding scene could be displayed in 3D point cloud format. Focusing on the geometric feature of the welding groove, the detection algorithm is capable of adapting well to different welding workpieces with a V-type welding groove. Meanwhile, a 3D welding trajectory involving 6-DOF poses of the welding groove for robotic manipulator motion is generated. With an acceptable error in trajectory generation, the robotic manipulator could drive the welding torch to follow the trajectory and execute welding tasks. In this paper, details of the integrated robotic system are also presented. Experimental results prove application value of the presented welding robotic system.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Point Cloud-Based Method for Automatic Groove Detection and Trajectory Generation of Robotic Arc Welding Tasks\",\"authors\":\"Rui Peng, D. Navarro-Alarcon, Victor Wu, Wen Yang\",\"doi\":\"10.1109/UR49135.2020.9144861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, in order to pursue high-efficiency robotic arc welding tasks, we propose a method based on point cloud acquired by an RGB-D sensor. The method consists of two parts: welding groove detection and 3D welding trajectory generation. The actual welding scene could be displayed in 3D point cloud format. Focusing on the geometric feature of the welding groove, the detection algorithm is capable of adapting well to different welding workpieces with a V-type welding groove. Meanwhile, a 3D welding trajectory involving 6-DOF poses of the welding groove for robotic manipulator motion is generated. With an acceptable error in trajectory generation, the robotic manipulator could drive the welding torch to follow the trajectory and execute welding tasks. In this paper, details of the integrated robotic system are also presented. Experimental results prove application value of the presented welding robotic system.\",\"PeriodicalId\":360208,\"journal\":{\"name\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UR49135.2020.9144861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Point Cloud-Based Method for Automatic Groove Detection and Trajectory Generation of Robotic Arc Welding Tasks
In this paper, in order to pursue high-efficiency robotic arc welding tasks, we propose a method based on point cloud acquired by an RGB-D sensor. The method consists of two parts: welding groove detection and 3D welding trajectory generation. The actual welding scene could be displayed in 3D point cloud format. Focusing on the geometric feature of the welding groove, the detection algorithm is capable of adapting well to different welding workpieces with a V-type welding groove. Meanwhile, a 3D welding trajectory involving 6-DOF poses of the welding groove for robotic manipulator motion is generated. With an acceptable error in trajectory generation, the robotic manipulator could drive the welding torch to follow the trajectory and execute welding tasks. In this paper, details of the integrated robotic system are also presented. Experimental results prove application value of the presented welding robotic system.