{"title":"天琴座/造父变星/ Mira dari超新星的全天自动巡天Menggunakan算法Naïve Bayes","authors":"Ayu Lestari, Nur Hasanah, Eko Juarlin","doi":"10.24114/jiaf.v8i2.31947","DOIUrl":null,"url":null,"abstract":"Penelitian ini menggunakan 58.423 data dari the All-Sky Automated Survey for Supernovae (ASAS-SN) untuk melakukan klasifikasi bintang RR Lyrae, Cepheid, dan Mira menggunakan pendekatan machine learning. Terdapat sembilan kolom yang dijadikan atribut dalam pembuatan model machine learning, yaitu: raj2000, dej2000, l, b, mean_vmag, amplitude, period, lksl_statistic, dan parallax dengan kolom variable_type digunakan sebagai target label. Dengan memanfaatkan training dataset (data latih) dan testing dataset (data uji), algoritma Naïve Bayes yang digunakan pada penelitian ini menghasilkan akurasi sebesar 98.6%. Sedangkan berdasarkan hasil evaluasi menggunakan confusion matrix, diperoleh presisi dari bintang RR Lyrae, Cepheid, dan Mira masing-masing sebesar 99%, 87%, dan 99%. Recall dari ketiga objek masing-masing adalah 99%, 88%, dan 99%, sedangkan nilai f1-score masing-masing sebesar 98%, 90%, dan 100%. Kesimpulan dari penelitian ini adalah algoritma Naïve Bayes dapat digunakan dalam klasifikasi objek astronomi dengan tingkat akurasi yang baik.","PeriodicalId":201408,"journal":{"name":"JURNAL IKATAN ALUMNI FISIKA","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Klasifikasi Bintang RR Lyrae / Cepheid / Mira dari The All-Sky Automated Survey for Supernovae Menggunakan Algoritma Naïve Bayes\",\"authors\":\"Ayu Lestari, Nur Hasanah, Eko Juarlin\",\"doi\":\"10.24114/jiaf.v8i2.31947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penelitian ini menggunakan 58.423 data dari the All-Sky Automated Survey for Supernovae (ASAS-SN) untuk melakukan klasifikasi bintang RR Lyrae, Cepheid, dan Mira menggunakan pendekatan machine learning. Terdapat sembilan kolom yang dijadikan atribut dalam pembuatan model machine learning, yaitu: raj2000, dej2000, l, b, mean_vmag, amplitude, period, lksl_statistic, dan parallax dengan kolom variable_type digunakan sebagai target label. Dengan memanfaatkan training dataset (data latih) dan testing dataset (data uji), algoritma Naïve Bayes yang digunakan pada penelitian ini menghasilkan akurasi sebesar 98.6%. Sedangkan berdasarkan hasil evaluasi menggunakan confusion matrix, diperoleh presisi dari bintang RR Lyrae, Cepheid, dan Mira masing-masing sebesar 99%, 87%, dan 99%. Recall dari ketiga objek masing-masing adalah 99%, 88%, dan 99%, sedangkan nilai f1-score masing-masing sebesar 98%, 90%, dan 100%. Kesimpulan dari penelitian ini adalah algoritma Naïve Bayes dapat digunakan dalam klasifikasi objek astronomi dengan tingkat akurasi yang baik.\",\"PeriodicalId\":201408,\"journal\":{\"name\":\"JURNAL IKATAN ALUMNI FISIKA\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JURNAL IKATAN ALUMNI FISIKA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/jiaf.v8i2.31947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL IKATAN ALUMNI FISIKA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/jiaf.v8i2.31947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Klasifikasi Bintang RR Lyrae / Cepheid / Mira dari The All-Sky Automated Survey for Supernovae Menggunakan Algoritma Naïve Bayes
Penelitian ini menggunakan 58.423 data dari the All-Sky Automated Survey for Supernovae (ASAS-SN) untuk melakukan klasifikasi bintang RR Lyrae, Cepheid, dan Mira menggunakan pendekatan machine learning. Terdapat sembilan kolom yang dijadikan atribut dalam pembuatan model machine learning, yaitu: raj2000, dej2000, l, b, mean_vmag, amplitude, period, lksl_statistic, dan parallax dengan kolom variable_type digunakan sebagai target label. Dengan memanfaatkan training dataset (data latih) dan testing dataset (data uji), algoritma Naïve Bayes yang digunakan pada penelitian ini menghasilkan akurasi sebesar 98.6%. Sedangkan berdasarkan hasil evaluasi menggunakan confusion matrix, diperoleh presisi dari bintang RR Lyrae, Cepheid, dan Mira masing-masing sebesar 99%, 87%, dan 99%. Recall dari ketiga objek masing-masing adalah 99%, 88%, dan 99%, sedangkan nilai f1-score masing-masing sebesar 98%, 90%, dan 100%. Kesimpulan dari penelitian ini adalah algoritma Naïve Bayes dapat digunakan dalam klasifikasi objek astronomi dengan tingkat akurasi yang baik.