将机器学习探针集成到VTR FPGA设计流程中

T. Martin, C. Barnes, G. Grewal, S. Areibi
{"title":"将机器学习探针集成到VTR FPGA设计流程中","authors":"T. Martin, C. Barnes, G. Grewal, S. Areibi","doi":"10.1109/SBCCI55532.2022.9893251","DOIUrl":null,"url":null,"abstract":"This paper proposes a set of Machine-Learning (ML) probes that can be used at the placement step within the Verilog-to-Routing (VTR) tool. The proposed probes can pro-vide real-time feedback to the VTR placer guiding it towards more “router-friendly” placement solutions that result in the router performing fewer computationally expensive rip-up and re-route operations. In addition to enabling the previous strategies for reducing routing runtimes, the proposed probes can also be used to speed up architecture exploration by providing estimates of interconnect resource utilization on the Field Programmable Gate Array (FPGA) without incurring the computational cost of actually performing routing. Re-sults obtained indicate that the proposed ML probes not only improve upon all the VTR estimates in terms of wirelength, critical path delay and segmented wire utilization but also reduce the routing time of the tool.","PeriodicalId":231587,"journal":{"name":"2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrating Machine-Learning Probes into the VTR FPGA Design Flow\",\"authors\":\"T. Martin, C. Barnes, G. Grewal, S. Areibi\",\"doi\":\"10.1109/SBCCI55532.2022.9893251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a set of Machine-Learning (ML) probes that can be used at the placement step within the Verilog-to-Routing (VTR) tool. The proposed probes can pro-vide real-time feedback to the VTR placer guiding it towards more “router-friendly” placement solutions that result in the router performing fewer computationally expensive rip-up and re-route operations. In addition to enabling the previous strategies for reducing routing runtimes, the proposed probes can also be used to speed up architecture exploration by providing estimates of interconnect resource utilization on the Field Programmable Gate Array (FPGA) without incurring the computational cost of actually performing routing. Re-sults obtained indicate that the proposed ML probes not only improve upon all the VTR estimates in terms of wirelength, critical path delay and segmented wire utilization but also reduce the routing time of the tool.\",\"PeriodicalId\":231587,\"journal\":{\"name\":\"2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBCCI55532.2022.9893251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBCCI55532.2022.9893251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一组机器学习(ML)探针,可用于Verilog-to-Routing (VTR)工具中的放置步骤。所提出的探针可以向VTR放置器提供实时反馈,指导其朝着更“路由器友好”的放置解决方案,从而使路由器执行更少的计算昂贵的撕裂和重新路由操作。除了支持前面减少路由运行时间的策略外,所提出的探针还可以通过提供对现场可编程门阵列(FPGA)上互连资源利用率的估计来加速架构探索,而不会产生实际执行路由的计算成本。结果表明,所提出的ML探针不仅在无线长度、关键路径延迟和分段导线利用率方面改善了所有VTR估计,而且还减少了工具的布线时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Machine-Learning Probes into the VTR FPGA Design Flow
This paper proposes a set of Machine-Learning (ML) probes that can be used at the placement step within the Verilog-to-Routing (VTR) tool. The proposed probes can pro-vide real-time feedback to the VTR placer guiding it towards more “router-friendly” placement solutions that result in the router performing fewer computationally expensive rip-up and re-route operations. In addition to enabling the previous strategies for reducing routing runtimes, the proposed probes can also be used to speed up architecture exploration by providing estimates of interconnect resource utilization on the Field Programmable Gate Array (FPGA) without incurring the computational cost of actually performing routing. Re-sults obtained indicate that the proposed ML probes not only improve upon all the VTR estimates in terms of wirelength, critical path delay and segmented wire utilization but also reduce the routing time of the tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信