异构多核/多核架构下基于dag的嵌入式视觉应用任务映射与调度研究

Stefano Aldegheri, N. Bombieri, Hiren D. Patel
{"title":"异构多核/多核架构下基于dag的嵌入式视觉应用任务映射与调度研究","authors":"Stefano Aldegheri, N. Bombieri, Hiren D. Patel","doi":"10.23919/DATE48585.2020.9116462","DOIUrl":null,"url":null,"abstract":"In this work, we show that applying the heterogeneous earliest finish time (HEFT) heuristic for the task scheduling of embedded vision applications can improve the system performance up to 70% w.r.t. the scheduling solutions at the state of the art. We propose an algorithm called exclusive earliest finish time (XEFT) that introduces the notion of exclusive overlap between application primitives to improve the load balancing. We show that XEFT can improve the system performance up to 33% over HEFT, and 82% over the state of the art approaches. We present the results on different benchmarks, including a real-world localization and mapping application (ORB-SLAM) combined with the NVIDIA object detection application based on deep-learning.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Task Mapping and Scheduling for DAG-based Embedded Vision Applications on Heterogeneous Multi/Many-core Architectures\",\"authors\":\"Stefano Aldegheri, N. Bombieri, Hiren D. Patel\",\"doi\":\"10.23919/DATE48585.2020.9116462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we show that applying the heterogeneous earliest finish time (HEFT) heuristic for the task scheduling of embedded vision applications can improve the system performance up to 70% w.r.t. the scheduling solutions at the state of the art. We propose an algorithm called exclusive earliest finish time (XEFT) that introduces the notion of exclusive overlap between application primitives to improve the load balancing. We show that XEFT can improve the system performance up to 33% over HEFT, and 82% over the state of the art approaches. We present the results on different benchmarks, including a real-world localization and mapping application (ORB-SLAM) combined with the NVIDIA object detection application based on deep-learning.\",\"PeriodicalId\":289525,\"journal\":{\"name\":\"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE48585.2020.9116462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们证明了将异构最早完成时间(HEFT)启发式方法应用于嵌入式视觉应用的任务调度可以将系统性能提高到目前最先进的调度解决方案的70%。我们提出了一种称为排他性最早完成时间(XEFT)的算法,它引入了应用程序原语之间的排他性重叠的概念,以改善负载平衡。我们表明,XEFT可以比HEFT提高33%的系统性能,比目前最先进的方法提高82%。我们展示了不同基准测试的结果,包括一个现实世界的定位和地图应用程序(ORB-SLAM)与基于深度学习的NVIDIA目标检测应用程序相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Task Mapping and Scheduling for DAG-based Embedded Vision Applications on Heterogeneous Multi/Many-core Architectures
In this work, we show that applying the heterogeneous earliest finish time (HEFT) heuristic for the task scheduling of embedded vision applications can improve the system performance up to 70% w.r.t. the scheduling solutions at the state of the art. We propose an algorithm called exclusive earliest finish time (XEFT) that introduces the notion of exclusive overlap between application primitives to improve the load balancing. We show that XEFT can improve the system performance up to 33% over HEFT, and 82% over the state of the art approaches. We present the results on different benchmarks, including a real-world localization and mapping application (ORB-SLAM) combined with the NVIDIA object detection application based on deep-learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信