记忆细胞神经网络中基于fpga的自动波生成

V. Pham, A. Buscarino, M. Frasca, L. Fortuna, T. Hoang
{"title":"记忆细胞神经网络中基于fpga的自动波生成","authors":"V. Pham, A. Buscarino, M. Frasca, L. Fortuna, T. Hoang","doi":"10.1109/CNNA.2012.6331435","DOIUrl":null,"url":null,"abstract":"Cellular Neural/Nonlinear Networks (CNNs) constitute an effective approach for studying complex phenomena like autowaves, spiral waves or pattern formation either by providing a computationally efficient environment for numerical simulations or by allowing the possibility of hardware emulators of the system under study. In this work, we focus on a CNN made of memristor-based cells, namely a Memristive Cellular Neural/Nonlinear Network (MCNN). This has been recently shown to be capable of generating complex phenomena such as autowave propagation. In this work, we implement such a MCNN by using Field Programmable Gate Array (FPGA). Our system consisting of a FPGA development board connected to a monitor allows us to emulate autowave propagation in an efficient way. Experimental results show the feasibility of FPGA-based approach to implement MCNN.","PeriodicalId":387536,"journal":{"name":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FPGA-based generation of autowaves in Memristive Cellular Neural Networks\",\"authors\":\"V. Pham, A. Buscarino, M. Frasca, L. Fortuna, T. Hoang\",\"doi\":\"10.1109/CNNA.2012.6331435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular Neural/Nonlinear Networks (CNNs) constitute an effective approach for studying complex phenomena like autowaves, spiral waves or pattern formation either by providing a computationally efficient environment for numerical simulations or by allowing the possibility of hardware emulators of the system under study. In this work, we focus on a CNN made of memristor-based cells, namely a Memristive Cellular Neural/Nonlinear Network (MCNN). This has been recently shown to be capable of generating complex phenomena such as autowave propagation. In this work, we implement such a MCNN by using Field Programmable Gate Array (FPGA). Our system consisting of a FPGA development board connected to a monitor allows us to emulate autowave propagation in an efficient way. Experimental results show the feasibility of FPGA-based approach to implement MCNN.\",\"PeriodicalId\":387536,\"journal\":{\"name\":\"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2012.6331435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2012.6331435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

细胞神经/非线性网络(cnn)是研究自动波、螺旋波或模式形成等复杂现象的有效方法,它为数值模拟提供了高效的计算环境,并允许所研究系统的硬件模拟器的可能性。在这项工作中,我们专注于由基于忆阻器的细胞组成的CNN,即忆阻细胞神经/非线性网络(MCNN)。这最近已被证明能够产生复杂的现象,如自动波传播。在这项工作中,我们使用现场可编程门阵列(FPGA)实现了这样一个MCNN。我们的系统由连接到监视器的FPGA开发板组成,使我们能够以有效的方式模拟自动波传播。实验结果表明,基于fpga实现MCNN的方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA-based generation of autowaves in Memristive Cellular Neural Networks
Cellular Neural/Nonlinear Networks (CNNs) constitute an effective approach for studying complex phenomena like autowaves, spiral waves or pattern formation either by providing a computationally efficient environment for numerical simulations or by allowing the possibility of hardware emulators of the system under study. In this work, we focus on a CNN made of memristor-based cells, namely a Memristive Cellular Neural/Nonlinear Network (MCNN). This has been recently shown to be capable of generating complex phenomena such as autowave propagation. In this work, we implement such a MCNN by using Field Programmable Gate Array (FPGA). Our system consisting of a FPGA development board connected to a monitor allows us to emulate autowave propagation in an efficient way. Experimental results show the feasibility of FPGA-based approach to implement MCNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信