改进KCD自动编码:介绍柯达和一种优化的韩文临床文件标记方法

Geunyeong Jeong, Juoh Sun, Seokwon Jeong, Hyunjin Shin, Harksoo Kim
{"title":"改进KCD自动编码:介绍柯达和一种优化的韩文临床文件标记方法","authors":"Geunyeong Jeong, Juoh Sun, Seokwon Jeong, Hyunjin Shin, Harksoo Kim","doi":"10.18653/v1/2023.clinicalnlp-1.12","DOIUrl":null,"url":null,"abstract":"International Classification of Diseases (ICD) coding is the task of assigning a patient’s electronic health records into standardized codes, which is crucial for enhancing medical services and reducing healthcare costs. In Korea, automatic Korean Standard Classification of Diseases (KCD) coding has been hindered by limited resources, differences in ICD systems, and language-specific characteristics. Therefore, we construct the Korean Dataset for Automatic KCD coding (KoDAK) by collecting and preprocessing Korean clinical documents. In addition, we propose a tokenization method optimized for Korean clinical documents. Our experiments show that our proposed method outperforms Korean Medical BERT (KM-BERT) in Macro-F1 performance by 0.14%p while using fewer model parameters, demonstrating its effectiveness in Korean clinical documents.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Automatic KCD Coding: Introducing the KoDAK and an Optimized Tokenization Method for Korean Clinical Documents\",\"authors\":\"Geunyeong Jeong, Juoh Sun, Seokwon Jeong, Hyunjin Shin, Harksoo Kim\",\"doi\":\"10.18653/v1/2023.clinicalnlp-1.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"International Classification of Diseases (ICD) coding is the task of assigning a patient’s electronic health records into standardized codes, which is crucial for enhancing medical services and reducing healthcare costs. In Korea, automatic Korean Standard Classification of Diseases (KCD) coding has been hindered by limited resources, differences in ICD systems, and language-specific characteristics. Therefore, we construct the Korean Dataset for Automatic KCD coding (KoDAK) by collecting and preprocessing Korean clinical documents. In addition, we propose a tokenization method optimized for Korean clinical documents. Our experiments show that our proposed method outperforms Korean Medical BERT (KM-BERT) in Macro-F1 performance by 0.14%p while using fewer model parameters, demonstrating its effectiveness in Korean clinical documents.\",\"PeriodicalId\":216954,\"journal\":{\"name\":\"Clinical Natural Language Processing Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Natural Language Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2023.clinicalnlp-1.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Natural Language Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.clinicalnlp-1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

国际疾病分类(ICD)编码是将患者的电子健康记录编入标准化代码的任务,这对于加强医疗服务和降低医疗成本至关重要。在韩国,韩国标准疾病分类(KCD)自动编码受到资源有限、ICD系统差异和语言特定特征的阻碍。因此,我们通过收集和预处理韩国临床文献,构建用于自动KCD编码(KoDAK)的韩国数据集。此外,我们提出了一种针对韩国临床文件优化的标记化方法。我们的实验表明,我们提出的方法在使用更少的模型参数的情况下,在宏观f1性能上比韩国医学BERT (KM-BERT)高出0.14%p,证明了其在韩国临床文献中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Automatic KCD Coding: Introducing the KoDAK and an Optimized Tokenization Method for Korean Clinical Documents
International Classification of Diseases (ICD) coding is the task of assigning a patient’s electronic health records into standardized codes, which is crucial for enhancing medical services and reducing healthcare costs. In Korea, automatic Korean Standard Classification of Diseases (KCD) coding has been hindered by limited resources, differences in ICD systems, and language-specific characteristics. Therefore, we construct the Korean Dataset for Automatic KCD coding (KoDAK) by collecting and preprocessing Korean clinical documents. In addition, we propose a tokenization method optimized for Korean clinical documents. Our experiments show that our proposed method outperforms Korean Medical BERT (KM-BERT) in Macro-F1 performance by 0.14%p while using fewer model parameters, demonstrating its effectiveness in Korean clinical documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信