{"title":"基于STT-MRAM的嵌入式处理器高速缓存构建","authors":"Lei Jiang, Bo Zhao, Youtao Zhang, Jun Yang","doi":"10.1145/2228360.2228521","DOIUrl":null,"url":null,"abstract":"MLC STT-MRAM (Multi-level Cell Spin-Transfer Torque Magnetic RAM), an emerging non-volatile memory technology, has become a promising candidate to construct L2 caches for high-end embedded processors. However, the long write latency limits the effectiveness of MLC STT-MRAM based L2 caches. In this paper, we address this limitation with two novel designs: Line Pairing (LP) and Line Swapping (LS). LP forms fast cachelines by re-organizing MLC soft bits which are faster to write. LS dynamically stores frequently written data into these fast cachelines. Our experimental results show that LP and LS improve system performance by 15% and reduce energy consumption by 21%.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Constructing large and fast multi-level cell STT-MRAM based cache for embedded processors\",\"authors\":\"Lei Jiang, Bo Zhao, Youtao Zhang, Jun Yang\",\"doi\":\"10.1145/2228360.2228521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MLC STT-MRAM (Multi-level Cell Spin-Transfer Torque Magnetic RAM), an emerging non-volatile memory technology, has become a promising candidate to construct L2 caches for high-end embedded processors. However, the long write latency limits the effectiveness of MLC STT-MRAM based L2 caches. In this paper, we address this limitation with two novel designs: Line Pairing (LP) and Line Swapping (LS). LP forms fast cachelines by re-organizing MLC soft bits which are faster to write. LS dynamically stores frequently written data into these fast cachelines. Our experimental results show that LP and LS improve system performance by 15% and reduce energy consumption by 21%.\",\"PeriodicalId\":263599,\"journal\":{\"name\":\"DAC Design Automation Conference 2012\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAC Design Automation Conference 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2228360.2228521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77
摘要
MLC STT-MRAM (multi -多级Cell Spin-Transfer Torque Magnetic RAM)是一种新兴的非易失性存储技术,已成为构建高端嵌入式处理器L2缓存的有希望的候选技术。然而,较长的写入延迟限制了基于MLC STT-MRAM的L2缓存的有效性。在本文中,我们用两种新颖的设计:线路配对(LP)和线路交换(LS)来解决这一限制。LP通过重新组织编写速度更快的MLC软位来形成快速缓存。LS动态地将频繁写入的数据存储到这些快速缓存中。我们的实验结果表明,LP和LS提高了系统性能15%,降低了21%的能耗。
Constructing large and fast multi-level cell STT-MRAM based cache for embedded processors
MLC STT-MRAM (Multi-level Cell Spin-Transfer Torque Magnetic RAM), an emerging non-volatile memory technology, has become a promising candidate to construct L2 caches for high-end embedded processors. However, the long write latency limits the effectiveness of MLC STT-MRAM based L2 caches. In this paper, we address this limitation with two novel designs: Line Pairing (LP) and Line Swapping (LS). LP forms fast cachelines by re-organizing MLC soft bits which are faster to write. LS dynamically stores frequently written data into these fast cachelines. Our experimental results show that LP and LS improve system performance by 15% and reduce energy consumption by 21%.