{"title":"利用人工神经网络改进了对蛋白质跨膜跨度的预测","authors":"J. Koehler, Ralf Mueller, J. Meiler","doi":"10.1109/CIBCB.2009.4925709","DOIUrl":null,"url":null,"abstract":"Tools for the identification of trans-membrane spans from the protein sequence are widely used in the experimental community. Computational structural biology seeks to increase the prediction accuracy of such methods since they represent a first step towards membrane protein tertiary structure prediction from the amino acid sequence. We introduce a predictor that is able to identify trans-membrane spans from the sequence of a protein. The novelty of the approach presented here is the simultaneous prediction of trans-membrane spanning α-helices and β-strands within a single tool. An artificial neural network was trained on databases of 102 membrane proteins and 3499 soluble proteins. Prediction accuracies of up to 92% for soluble residues, 75% for residues in the interface, and 73% for TM residues are achieved. On average the algorithm predicts 79% of the residues correctly which is a substantial improvement from a previously published implementation which achieved 57% accuracy (Koehler et al., Proteins: Structure, Function, and Bioinformatics, 2008). The algorithm was applied to four membrane proteins to illustrate the applicability to both α-helical bundles and β-barrels.","PeriodicalId":162052,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved prediction of trans-membrane spans in proteins using an artificial neural network\",\"authors\":\"J. Koehler, Ralf Mueller, J. Meiler\",\"doi\":\"10.1109/CIBCB.2009.4925709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tools for the identification of trans-membrane spans from the protein sequence are widely used in the experimental community. Computational structural biology seeks to increase the prediction accuracy of such methods since they represent a first step towards membrane protein tertiary structure prediction from the amino acid sequence. We introduce a predictor that is able to identify trans-membrane spans from the sequence of a protein. The novelty of the approach presented here is the simultaneous prediction of trans-membrane spanning α-helices and β-strands within a single tool. An artificial neural network was trained on databases of 102 membrane proteins and 3499 soluble proteins. Prediction accuracies of up to 92% for soluble residues, 75% for residues in the interface, and 73% for TM residues are achieved. On average the algorithm predicts 79% of the residues correctly which is a substantial improvement from a previously published implementation which achieved 57% accuracy (Koehler et al., Proteins: Structure, Function, and Bioinformatics, 2008). The algorithm was applied to four membrane proteins to illustrate the applicability to both α-helical bundles and β-barrels.\",\"PeriodicalId\":162052,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2009.4925709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2009.4925709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved prediction of trans-membrane spans in proteins using an artificial neural network
Tools for the identification of trans-membrane spans from the protein sequence are widely used in the experimental community. Computational structural biology seeks to increase the prediction accuracy of such methods since they represent a first step towards membrane protein tertiary structure prediction from the amino acid sequence. We introduce a predictor that is able to identify trans-membrane spans from the sequence of a protein. The novelty of the approach presented here is the simultaneous prediction of trans-membrane spanning α-helices and β-strands within a single tool. An artificial neural network was trained on databases of 102 membrane proteins and 3499 soluble proteins. Prediction accuracies of up to 92% for soluble residues, 75% for residues in the interface, and 73% for TM residues are achieved. On average the algorithm predicts 79% of the residues correctly which is a substantial improvement from a previously published implementation which achieved 57% accuracy (Koehler et al., Proteins: Structure, Function, and Bioinformatics, 2008). The algorithm was applied to four membrane proteins to illustrate the applicability to both α-helical bundles and β-barrels.