利用人工神经网络改进了对蛋白质跨膜跨度的预测

J. Koehler, Ralf Mueller, J. Meiler
{"title":"利用人工神经网络改进了对蛋白质跨膜跨度的预测","authors":"J. Koehler, Ralf Mueller, J. Meiler","doi":"10.1109/CIBCB.2009.4925709","DOIUrl":null,"url":null,"abstract":"Tools for the identification of trans-membrane spans from the protein sequence are widely used in the experimental community. Computational structural biology seeks to increase the prediction accuracy of such methods since they represent a first step towards membrane protein tertiary structure prediction from the amino acid sequence. We introduce a predictor that is able to identify trans-membrane spans from the sequence of a protein. The novelty of the approach presented here is the simultaneous prediction of trans-membrane spanning α-helices and β-strands within a single tool. An artificial neural network was trained on databases of 102 membrane proteins and 3499 soluble proteins. Prediction accuracies of up to 92% for soluble residues, 75% for residues in the interface, and 73% for TM residues are achieved. On average the algorithm predicts 79% of the residues correctly which is a substantial improvement from a previously published implementation which achieved 57% accuracy (Koehler et al., Proteins: Structure, Function, and Bioinformatics, 2008). The algorithm was applied to four membrane proteins to illustrate the applicability to both α-helical bundles and β-barrels.","PeriodicalId":162052,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved prediction of trans-membrane spans in proteins using an artificial neural network\",\"authors\":\"J. Koehler, Ralf Mueller, J. Meiler\",\"doi\":\"10.1109/CIBCB.2009.4925709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tools for the identification of trans-membrane spans from the protein sequence are widely used in the experimental community. Computational structural biology seeks to increase the prediction accuracy of such methods since they represent a first step towards membrane protein tertiary structure prediction from the amino acid sequence. We introduce a predictor that is able to identify trans-membrane spans from the sequence of a protein. The novelty of the approach presented here is the simultaneous prediction of trans-membrane spanning α-helices and β-strands within a single tool. An artificial neural network was trained on databases of 102 membrane proteins and 3499 soluble proteins. Prediction accuracies of up to 92% for soluble residues, 75% for residues in the interface, and 73% for TM residues are achieved. On average the algorithm predicts 79% of the residues correctly which is a substantial improvement from a previously published implementation which achieved 57% accuracy (Koehler et al., Proteins: Structure, Function, and Bioinformatics, 2008). The algorithm was applied to four membrane proteins to illustrate the applicability to both α-helical bundles and β-barrels.\",\"PeriodicalId\":162052,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2009.4925709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2009.4925709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从蛋白质序列中鉴定跨膜跨度的工具在实验界被广泛使用。计算结构生物学试图提高这些方法的预测准确性,因为它们代表了从氨基酸序列预测膜蛋白三级结构的第一步。我们介绍了一个预测器,能够识别跨膜跨度从一个蛋白质的序列。本文提出的方法的新颖之处在于在一个工具内同时预测跨膜跨越α-螺旋和β-链。在102个膜蛋白和3499个可溶性蛋白的数据库上训练了一个人工神经网络。可溶残留物的预测精度高达92%,界面残留物的预测精度为75%,TM残留物的预测精度为73%。平均而言,该算法正确预测了79%的残基,这比之前发表的实现(达到57%的准确率)有了实质性的改进(Koehler等人,蛋白质:结构,功能和生物信息学,2008)。将该算法应用于四种膜蛋白,以说明α-螺旋束和β-桶的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved prediction of trans-membrane spans in proteins using an artificial neural network
Tools for the identification of trans-membrane spans from the protein sequence are widely used in the experimental community. Computational structural biology seeks to increase the prediction accuracy of such methods since they represent a first step towards membrane protein tertiary structure prediction from the amino acid sequence. We introduce a predictor that is able to identify trans-membrane spans from the sequence of a protein. The novelty of the approach presented here is the simultaneous prediction of trans-membrane spanning α-helices and β-strands within a single tool. An artificial neural network was trained on databases of 102 membrane proteins and 3499 soluble proteins. Prediction accuracies of up to 92% for soluble residues, 75% for residues in the interface, and 73% for TM residues are achieved. On average the algorithm predicts 79% of the residues correctly which is a substantial improvement from a previously published implementation which achieved 57% accuracy (Koehler et al., Proteins: Structure, Function, and Bioinformatics, 2008). The algorithm was applied to four membrane proteins to illustrate the applicability to both α-helical bundles and β-barrels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信