心音分类的深度学习软硬件协同设计

Wun-Siou Jhong, S. Chu, Yu-Jung Huang, Tsun-Yi Hsu, Wei-Chen Lin, Po-Chung Huang, Jia-Jung Wang
{"title":"心音分类的深度学习软硬件协同设计","authors":"Wun-Siou Jhong, S. Chu, Yu-Jung Huang, Tsun-Yi Hsu, Wei-Chen Lin, Po-Chung Huang, Jia-Jung Wang","doi":"10.1109/ISOCC50952.2020.9333069","DOIUrl":null,"url":null,"abstract":"This paper presents a software/hardware co-design for classifying three most commonly heart sounds classes: normal, murmur and extrasystole heartbeat. The detection system extracts Mel Frequency Cepstral Coefficient (MFCC)-based heart sound features to train different deep learning network architectures for multiclass classification. The software/hardware co-design for Long Short-Term Memory (LSTM) implementation indicates the multiclass classification accuracy of 85% can be achieved. The proposed heart sound classification platform has great development potential and good application prospects.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning Hardware/Software Co-Design for Heart Sound Classification\",\"authors\":\"Wun-Siou Jhong, S. Chu, Yu-Jung Huang, Tsun-Yi Hsu, Wei-Chen Lin, Po-Chung Huang, Jia-Jung Wang\",\"doi\":\"10.1109/ISOCC50952.2020.9333069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a software/hardware co-design for classifying three most commonly heart sounds classes: normal, murmur and extrasystole heartbeat. The detection system extracts Mel Frequency Cepstral Coefficient (MFCC)-based heart sound features to train different deep learning network architectures for multiclass classification. The software/hardware co-design for Long Short-Term Memory (LSTM) implementation indicates the multiclass classification accuracy of 85% can be achieved. The proposed heart sound classification platform has great development potential and good application prospects.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9333069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9333069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种软件/硬件协同设计,用于对三种最常见的心音进行分类:正常、杂音和心动过速。检测系统提取基于Mel频率倒谱系数(MFCC)的心音特征,训练不同的深度学习网络架构进行多类分类。长短期记忆(LSTM)实现的软硬件协同设计表明,可实现85%的多类分类准确率。所提出的心音分类平台具有很大的发展潜力和良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Hardware/Software Co-Design for Heart Sound Classification
This paper presents a software/hardware co-design for classifying three most commonly heart sounds classes: normal, murmur and extrasystole heartbeat. The detection system extracts Mel Frequency Cepstral Coefficient (MFCC)-based heart sound features to train different deep learning network architectures for multiclass classification. The software/hardware co-design for Long Short-Term Memory (LSTM) implementation indicates the multiclass classification accuracy of 85% can be achieved. The proposed heart sound classification platform has great development potential and good application prospects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信