识别多文档关系

E. Maziero, M. L. C. Jorge, T. Pardo
{"title":"识别多文档关系","authors":"E. Maziero, M. L. C. Jorge, T. Pardo","doi":"10.5220/0003028800600069","DOIUrl":null,"url":null,"abstract":"The digital world generates an incredible accumulation of information. This results in redundant, complementary, and contradictory information, which may be produced by several sources. Applications as multidocument summarization and question answering are committed to handling this information and require the identification of relations among the various texts in order to accomplish their tasks. In this paper we first describe an effort to create and annotate a corpus of news texts with multidocument relations from the Crossdocument Structure Theory (CST) and then present a machine learning experiment for the automatic identification of some of these relations. We show that our results for both tasks are satisfactory.","PeriodicalId":378427,"journal":{"name":"International Workshop on Natural Language Processing and Cognitive Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Identifying Multidocument Relations\",\"authors\":\"E. Maziero, M. L. C. Jorge, T. Pardo\",\"doi\":\"10.5220/0003028800600069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The digital world generates an incredible accumulation of information. This results in redundant, complementary, and contradictory information, which may be produced by several sources. Applications as multidocument summarization and question answering are committed to handling this information and require the identification of relations among the various texts in order to accomplish their tasks. In this paper we first describe an effort to create and annotate a corpus of news texts with multidocument relations from the Crossdocument Structure Theory (CST) and then present a machine learning experiment for the automatic identification of some of these relations. We show that our results for both tasks are satisfactory.\",\"PeriodicalId\":378427,\"journal\":{\"name\":\"International Workshop on Natural Language Processing and Cognitive Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Natural Language Processing and Cognitive Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0003028800600069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Natural Language Processing and Cognitive Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003028800600069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

数字世界产生了难以置信的信息积累。这就产生了冗余的、互补的和矛盾的信息,这些信息可能是由几个来源产生的。多文档摘要和问答等应用程序致力于处理这些信息,并要求识别各种文本之间的关系以完成其任务。在本文中,我们首先描述了从跨文档结构理论(CST)中创建和注释具有多文档关系的新闻文本语料库的努力,然后提出了一个用于自动识别这些关系的机器学习实验。我们表明,这两项任务的结果都是令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Multidocument Relations
The digital world generates an incredible accumulation of information. This results in redundant, complementary, and contradictory information, which may be produced by several sources. Applications as multidocument summarization and question answering are committed to handling this information and require the identification of relations among the various texts in order to accomplish their tasks. In this paper we first describe an effort to create and annotate a corpus of news texts with multidocument relations from the Crossdocument Structure Theory (CST) and then present a machine learning experiment for the automatic identification of some of these relations. We show that our results for both tasks are satisfactory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信