切削油少量润滑滚刀加工的基础研究

H. Matsuoka, Y. Tsuda, S. Suda, H. Yokota
{"title":"切削油少量润滑滚刀加工的基础研究","authors":"H. Matsuoka, Y. Tsuda, S. Suda, H. Yokota","doi":"10.1299/JSMEC.49.1140","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the effect of cutting speed on flank wear, crater wear and finished surface roughness during hobbing using an uncoated tool, and TiN- and (Al, Ti)N- coated tools with a minimal quantity lubrication (MQL) system. The experiments were conducted by simulating hobbing by fly tool cutting on a milling machine. The results helped clarify the following points. (1) With the uncoated tool and the TiN-coated tool, the flank wear increases upon increasing in the cutting speed from 47m/min to 86m/min. Conversely, flank wear decreases at the higher speed of 117m/min. It was impossible to cut at 159m/min owing to the failure of the cutting edge. With the (Al, Ti)N-coated tool, the flank wear showed nearly the same small value, irrespective of cutting speed. (2) The cutting speed also has a large effect on crater wear, particularly for the TiN-and (Al, Ti)N-coated tools. The cutting speed of 117m/min is suitable for decreasing crater wear. (3) The finished surface roughness is small for all the tools used in this test for cutting speeds less than 86m/min, after which it becomes large because of the adhesion of deposited metal at cutting speeds more than 117m/min. When using the TiN- and (Al, Ti)N-coated tools, there is a critical cutting groove length, at which the surface roughness decreases rapidly.","PeriodicalId":151961,"journal":{"name":"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Fundamental Research on Hobbing with Minimal Quantity Lubrication of Cutting Oil\",\"authors\":\"H. Matsuoka, Y. Tsuda, S. Suda, H. Yokota\",\"doi\":\"10.1299/JSMEC.49.1140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the effect of cutting speed on flank wear, crater wear and finished surface roughness during hobbing using an uncoated tool, and TiN- and (Al, Ti)N- coated tools with a minimal quantity lubrication (MQL) system. The experiments were conducted by simulating hobbing by fly tool cutting on a milling machine. The results helped clarify the following points. (1) With the uncoated tool and the TiN-coated tool, the flank wear increases upon increasing in the cutting speed from 47m/min to 86m/min. Conversely, flank wear decreases at the higher speed of 117m/min. It was impossible to cut at 159m/min owing to the failure of the cutting edge. With the (Al, Ti)N-coated tool, the flank wear showed nearly the same small value, irrespective of cutting speed. (2) The cutting speed also has a large effect on crater wear, particularly for the TiN-and (Al, Ti)N-coated tools. The cutting speed of 117m/min is suitable for decreasing crater wear. (3) The finished surface roughness is small for all the tools used in this test for cutting speeds less than 86m/min, after which it becomes large because of the adhesion of deposited metal at cutting speeds more than 117m/min. When using the TiN- and (Al, Ti)N-coated tools, there is a critical cutting groove length, at which the surface roughness decreases rapidly.\",\"PeriodicalId\":151961,\"journal\":{\"name\":\"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEC.49.1140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEC.49.1140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在本文中,我们研究了切削速度对滚刀过程中刀具侧面磨损、凹坑磨损和成品表面粗糙度的影响,包括使用未涂层刀具和使用少量润滑(MQL)系统的TiN和(Al, Ti)N涂层刀具。通过在铣床上模拟飞刀切削滚齿进行了实验研究。结果有助于澄清以下几点。(1)对于未涂层刀具和镀锡刀具,当切削速度从47m/min增加到86m/min时,刃口磨损增大。反之,当转速为117m/min时,侧翼磨损减小。由于切削刃失效,无法以159m/min的速度切割。对于(Al, Ti) n涂层刀具,与切削速度无关,其侧面磨损值几乎相同。(2)切削速度对弹坑磨损也有较大影响,特别是tin和(Al, Ti) n涂层刀具。切削速度为117m/min,可有效降低弹坑磨损。(3)当切削速度小于86m/min时,试验中使用的所有刀具的成品表面粗糙度都很小,当切削速度大于117m/min时,由于沉积金属的粘附作用,成品表面粗糙度变大。当使用TiN和(Al, Ti) n涂层刀具时,存在一个临界切削槽长度,在该长度处表面粗糙度迅速下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamental Research on Hobbing with Minimal Quantity Lubrication of Cutting Oil
In this paper, we investigate the effect of cutting speed on flank wear, crater wear and finished surface roughness during hobbing using an uncoated tool, and TiN- and (Al, Ti)N- coated tools with a minimal quantity lubrication (MQL) system. The experiments were conducted by simulating hobbing by fly tool cutting on a milling machine. The results helped clarify the following points. (1) With the uncoated tool and the TiN-coated tool, the flank wear increases upon increasing in the cutting speed from 47m/min to 86m/min. Conversely, flank wear decreases at the higher speed of 117m/min. It was impossible to cut at 159m/min owing to the failure of the cutting edge. With the (Al, Ti)N-coated tool, the flank wear showed nearly the same small value, irrespective of cutting speed. (2) The cutting speed also has a large effect on crater wear, particularly for the TiN-and (Al, Ti)N-coated tools. The cutting speed of 117m/min is suitable for decreasing crater wear. (3) The finished surface roughness is small for all the tools used in this test for cutting speeds less than 86m/min, after which it becomes large because of the adhesion of deposited metal at cutting speeds more than 117m/min. When using the TiN- and (Al, Ti)N-coated tools, there is a critical cutting groove length, at which the surface roughness decreases rapidly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信