模型阶数降阶适用于电机在线线性变参数热模型

F. Qi, Duy An Ly, Christoph H. van der Broeck, Decheng Yan, R. D. De Doncker
{"title":"模型阶数降阶适用于电机在线线性变参数热模型","authors":"F. Qi, Duy An Ly, Christoph H. van der Broeck, Decheng Yan, R. D. De Doncker","doi":"10.1109/SPEC.2016.7846147","DOIUrl":null,"url":null,"abstract":"For the control of high performance electrical machines, it is desirable to estimate the hot-spot temperatures in order to exploit the machine up to its thermal limits. An accurate temperature estimation can be achieved by means of high-order lumped parameter thermal networks. In variable-speed drives the thermal networks are parameter-varying due to the speed dependency of the convective heat transfer. These high-order parameter-varying models require a high calculation effort. For online temperature estimation it is desirable to reduce the order of the model. This paper presents an easy-to-implement model order reduction method for linear parameter-varying thermal model, which makes the model suitable for real-time online temperature estimation. The concept is exemplarily shown on an air-cooled induction motor for automotive applications. A high-order thermal model is built up and reduced using the proposed algorithm. The accuracy of models is validated by simulations and measurements.","PeriodicalId":403316,"journal":{"name":"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Model order reduction suitable for online linear parameter-varying thermal models of electric motors\",\"authors\":\"F. Qi, Duy An Ly, Christoph H. van der Broeck, Decheng Yan, R. D. De Doncker\",\"doi\":\"10.1109/SPEC.2016.7846147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the control of high performance electrical machines, it is desirable to estimate the hot-spot temperatures in order to exploit the machine up to its thermal limits. An accurate temperature estimation can be achieved by means of high-order lumped parameter thermal networks. In variable-speed drives the thermal networks are parameter-varying due to the speed dependency of the convective heat transfer. These high-order parameter-varying models require a high calculation effort. For online temperature estimation it is desirable to reduce the order of the model. This paper presents an easy-to-implement model order reduction method for linear parameter-varying thermal model, which makes the model suitable for real-time online temperature estimation. The concept is exemplarily shown on an air-cooled induction motor for automotive applications. A high-order thermal model is built up and reduced using the proposed algorithm. The accuracy of models is validated by simulations and measurements.\",\"PeriodicalId\":403316,\"journal\":{\"name\":\"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2016.7846147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2016.7846147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

对于高性能电机的控制,估计热点温度是可取的,以便利用机器达到其热极限。利用高阶集总参数热网络可以获得精确的温度估计。在变速传动中,由于对流换热的速度依赖性,热网络是参数变化的。这些高阶参数变模型需要很高的计算量。对于在线温度估计,需要降低模型的阶数。本文提出了一种易于实现的线性变参数热模型降阶方法,使该模型适合于实时在线温度估计。这一概念在汽车应用的风冷感应电动机上得到了典型的体现。利用该算法建立了一个高阶热模型,并进行了约简。通过仿真和实测验证了模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model order reduction suitable for online linear parameter-varying thermal models of electric motors
For the control of high performance electrical machines, it is desirable to estimate the hot-spot temperatures in order to exploit the machine up to its thermal limits. An accurate temperature estimation can be achieved by means of high-order lumped parameter thermal networks. In variable-speed drives the thermal networks are parameter-varying due to the speed dependency of the convective heat transfer. These high-order parameter-varying models require a high calculation effort. For online temperature estimation it is desirable to reduce the order of the model. This paper presents an easy-to-implement model order reduction method for linear parameter-varying thermal model, which makes the model suitable for real-time online temperature estimation. The concept is exemplarily shown on an air-cooled induction motor for automotive applications. A high-order thermal model is built up and reduced using the proposed algorithm. The accuracy of models is validated by simulations and measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信