基于二极管的CMOS MEMS热流传感器

A. De Luca, C. Falco, Ethan L. W. Gardner, J. Coull, F. Udrea
{"title":"基于二极管的CMOS MEMS热流传感器","authors":"A. De Luca, C. Falco, Ethan L. W. Gardner, J. Coull, F. Udrea","doi":"10.1109/TRANSDUCERS.2017.7994516","DOIUrl":null,"url":null,"abstract":"This paper reports on the intrinsic advantages of thermoelectronic flow sensors in comparison to their thermoresistive and thermoelectric counterparts. Hereafter, we will numerically and experimentally show that thermoelectronic flow sensors (i.e. thermal flow sensors employing p-n junction based devices as temperature sensors) benefit from the possibility of having the temperature sensor located in the hottest area of the heating element for enhanced convective effects and thus improved sensor sensitivity (Average Sensitivity +42%). Further improvements can be achieved by putting more diodes in series (Average Sensitivity +380%). A multidirectional thermoelectronic flow sensor is also reported.","PeriodicalId":174774,"journal":{"name":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Diode-based CMOS MEMS thermal flow sensors\",\"authors\":\"A. De Luca, C. Falco, Ethan L. W. Gardner, J. Coull, F. Udrea\",\"doi\":\"10.1109/TRANSDUCERS.2017.7994516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the intrinsic advantages of thermoelectronic flow sensors in comparison to their thermoresistive and thermoelectric counterparts. Hereafter, we will numerically and experimentally show that thermoelectronic flow sensors (i.e. thermal flow sensors employing p-n junction based devices as temperature sensors) benefit from the possibility of having the temperature sensor located in the hottest area of the heating element for enhanced convective effects and thus improved sensor sensitivity (Average Sensitivity +42%). Further improvements can be achieved by putting more diodes in series (Average Sensitivity +380%). A multidirectional thermoelectronic flow sensor is also reported.\",\"PeriodicalId\":174774,\"journal\":{\"name\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2017.7994516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2017.7994516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文报道了热电子流量传感器相对于热阻式和热电式流量传感器的内在优势。此后,我们将通过数值和实验证明,热电子流量传感器(即采用基于pn结的器件作为温度传感器的热流传感器)受益于将温度传感器置于加热元件最热区域的可能性,从而增强对流效应,从而提高传感器灵敏度(平均灵敏度+42%)。进一步的改进可以通过将更多的二极管串联(平均灵敏度+380%)来实现。本文还报道了一种多向热电子流量传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diode-based CMOS MEMS thermal flow sensors
This paper reports on the intrinsic advantages of thermoelectronic flow sensors in comparison to their thermoresistive and thermoelectric counterparts. Hereafter, we will numerically and experimentally show that thermoelectronic flow sensors (i.e. thermal flow sensors employing p-n junction based devices as temperature sensors) benefit from the possibility of having the temperature sensor located in the hottest area of the heating element for enhanced convective effects and thus improved sensor sensitivity (Average Sensitivity +42%). Further improvements can be achieved by putting more diodes in series (Average Sensitivity +380%). A multidirectional thermoelectronic flow sensor is also reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信