H. Pilo, J. Barwin, G. Braceras, C. Browning, S. Burns, J. Gabric, S. Lamphier, M. Miller, A. Roberts, F. Towler
{"title":"基于65nm和45nm技术节点的SRAM设计,具有扩展工作电压的读写辅助电路","authors":"H. Pilo, J. Barwin, G. Braceras, C. Browning, S. Burns, J. Gabric, S. Lamphier, M. Miller, A. Roberts, F. Towler","doi":"10.1109/VLSIC.2006.1705289","DOIUrl":null,"url":null,"abstract":"This paper describes a 32Mb SRAM that has been designed and fabricated in a 65nm low-power CMOS technology. The design has also been migrated to 45nm bulk and SOI technologies. The 68mm die features read and write-assist circuit techniques that expand the operating voltage range and improve manufacturability across technology platforms","PeriodicalId":366835,"journal":{"name":"2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers.","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":"{\"title\":\"An SRAM Design in 65nm and 45nm Technology Nodes Featuring Read and Write-Assist Circuits to Expand Operating Voltage\",\"authors\":\"H. Pilo, J. Barwin, G. Braceras, C. Browning, S. Burns, J. Gabric, S. Lamphier, M. Miller, A. Roberts, F. Towler\",\"doi\":\"10.1109/VLSIC.2006.1705289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a 32Mb SRAM that has been designed and fabricated in a 65nm low-power CMOS technology. The design has also been migrated to 45nm bulk and SOI technologies. The 68mm die features read and write-assist circuit techniques that expand the operating voltage range and improve manufacturability across technology platforms\",\"PeriodicalId\":366835,\"journal\":{\"name\":\"2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers.\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2006.1705289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2006.1705289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An SRAM Design in 65nm and 45nm Technology Nodes Featuring Read and Write-Assist Circuits to Expand Operating Voltage
This paper describes a 32Mb SRAM that has been designed and fabricated in a 65nm low-power CMOS technology. The design has also been migrated to 45nm bulk and SOI technologies. The 68mm die features read and write-assist circuit techniques that expand the operating voltage range and improve manufacturability across technology platforms