采用稳定性边界轨迹拟合的二阶模型近似PID控制器设计

F. N. Deniz, B. Alagoz, N. Tan
{"title":"采用稳定性边界轨迹拟合的二阶模型近似PID控制器设计","authors":"F. N. Deniz, B. Alagoz, N. Tan","doi":"10.1109/ELECO.2015.7394585","DOIUrl":null,"url":null,"abstract":"This study presents a model reduction method based on stability boundary locus (SBL) fitting for PID controller design problems. SBL analysis was commonly applied for controller stabilization problems. However, we use SBL analysis for the reduction of high order linear time invariant system models to second-order approximate models to facilitate analytical design of closed loop PID control systems. The PID design is implemented by a multiple pole placement strategy which enforces the control system had real poles with a desired time constant specification. Illustrative design examples are presented for the analytical PID design of high-order plant models by means of second-order SBL model approximations.","PeriodicalId":369687,"journal":{"name":"2015 9th International Conference on Electrical and Electronics Engineering (ELECO)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"PID controller design based on second order model approximation by using stability boundary locus fitting\",\"authors\":\"F. N. Deniz, B. Alagoz, N. Tan\",\"doi\":\"10.1109/ELECO.2015.7394585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a model reduction method based on stability boundary locus (SBL) fitting for PID controller design problems. SBL analysis was commonly applied for controller stabilization problems. However, we use SBL analysis for the reduction of high order linear time invariant system models to second-order approximate models to facilitate analytical design of closed loop PID control systems. The PID design is implemented by a multiple pole placement strategy which enforces the control system had real poles with a desired time constant specification. Illustrative design examples are presented for the analytical PID design of high-order plant models by means of second-order SBL model approximations.\",\"PeriodicalId\":369687,\"journal\":{\"name\":\"2015 9th International Conference on Electrical and Electronics Engineering (ELECO)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 9th International Conference on Electrical and Electronics Engineering (ELECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELECO.2015.7394585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th International Conference on Electrical and Electronics Engineering (ELECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECO.2015.7394585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

针对PID控制器的设计问题,提出了一种基于稳定边界轨迹(SBL)拟合的模型简化方法。SBL分析通常用于控制器的稳定问题。然而,我们使用SBL分析将高阶线性时不变系统模型简化为二阶近似模型,以方便闭环PID控制系统的解析设计。采用多极点配置策略实现PID设计,使控制系统具有符合时间常数要求的实极点。给出了利用二阶SBL模型近似对高阶对象模型进行解析式PID设计的实例说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PID controller design based on second order model approximation by using stability boundary locus fitting
This study presents a model reduction method based on stability boundary locus (SBL) fitting for PID controller design problems. SBL analysis was commonly applied for controller stabilization problems. However, we use SBL analysis for the reduction of high order linear time invariant system models to second-order approximate models to facilitate analytical design of closed loop PID control systems. The PID design is implemented by a multiple pole placement strategy which enforces the control system had real poles with a desired time constant specification. Illustrative design examples are presented for the analytical PID design of high-order plant models by means of second-order SBL model approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信