特定应用单元综合的统计设计空间探索

D. Bruni, A. Bogliolo, L. Benini
{"title":"特定应用单元综合的统计设计空间探索","authors":"D. Bruni, A. Bogliolo, L. Benini","doi":"10.1145/378239.379039","DOIUrl":null,"url":null,"abstract":"The capability of performing semi-automated design space exploration is the main advantage of high-level synthesis with respect to RTL design. However, design space exploration performed during; high-level synthesis is limited in scope, since it provides promising solutions that represent good starting points for subsequent optimizations, but it provides no insight about the overall structure of the design space. In this work we propose unsupervised Monte-Carlo design exploration and statistical characterization to capture the key features of the design space. Our analysis provides insight on how various solutions are distributed over the entire design space. In addition, we apply extreme value theory (1997) to extrapolate achievable bounds from the sampling points.","PeriodicalId":154316,"journal":{"name":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Statistical design space exploration for application-specific unit synthesis\",\"authors\":\"D. Bruni, A. Bogliolo, L. Benini\",\"doi\":\"10.1145/378239.379039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capability of performing semi-automated design space exploration is the main advantage of high-level synthesis with respect to RTL design. However, design space exploration performed during; high-level synthesis is limited in scope, since it provides promising solutions that represent good starting points for subsequent optimizations, but it provides no insight about the overall structure of the design space. In this work we propose unsupervised Monte-Carlo design exploration and statistical characterization to capture the key features of the design space. Our analysis provides insight on how various solutions are distributed over the entire design space. In addition, we apply extreme value theory (1997) to extrapolate achievable bounds from the sampling points.\",\"PeriodicalId\":154316,\"journal\":{\"name\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/378239.379039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/378239.379039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

执行半自动化设计空间探索的能力是高级综合相对于RTL设计的主要优势。然而,设计空间探索期间执行;高级综合在范围上是有限的,因为它提供了有希望的解决方案,代表了后续优化的良好起点,但是它没有提供关于设计空间整体结构的洞察。在这项工作中,我们提出了无监督的蒙特卡罗设计探索和统计表征,以捕捉设计空间的关键特征。我们的分析提供了关于如何在整个设计空间中分布各种解决方案的见解。此外,我们应用极值理论(1997)从采样点外推可实现的界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical design space exploration for application-specific unit synthesis
The capability of performing semi-automated design space exploration is the main advantage of high-level synthesis with respect to RTL design. However, design space exploration performed during; high-level synthesis is limited in scope, since it provides promising solutions that represent good starting points for subsequent optimizations, but it provides no insight about the overall structure of the design space. In this work we propose unsupervised Monte-Carlo design exploration and statistical characterization to capture the key features of the design space. Our analysis provides insight on how various solutions are distributed over the entire design space. In addition, we apply extreme value theory (1997) to extrapolate achievable bounds from the sampling points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信