通过有限元反模拟控制软实体装置的刚度绘制

F. Largilliere, E. Coevoet, Mario Sanz-Lopez, L. Grisoni, C. Duriez
{"title":"通过有限元反模拟控制软实体装置的刚度绘制","authors":"F. Largilliere, E. Coevoet, Mario Sanz-Lopez, L. Grisoni, C. Duriez","doi":"10.1109/IROS.2016.7759768","DOIUrl":null,"url":null,"abstract":"Haptic rendering of soft bodies is essential in medical simulations of procedures such as surgery or palpation. The most commonly used approach is to recreate the sense of touch using a specific design and control of a robotic arm. In this paper, we propose a new approach, based on soft-robotics technology. We create a tangible deformable device that allows users to “touch” soft tissues and perceive mechanical material properties, in a realistic manner. The device is able to dynamically provide user touch with different stiffness perceptions, thanks to actuators placed at the boundaries. We introduce a control algorithm, based on inverse Finite Element Analysis, which controls the actuators in order to recreate a desired stiffness that corresponds to the contact with soft tissues in the virtual environment. The approach uses antagonistic actuation principle to create a wide range of stiffness. We validate our algorithm and demonstrate the method using prototypes based on simple mechanisms.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Stiffness rendering on soft tangible devices controlled through inverse FEM simulation\",\"authors\":\"F. Largilliere, E. Coevoet, Mario Sanz-Lopez, L. Grisoni, C. Duriez\",\"doi\":\"10.1109/IROS.2016.7759768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Haptic rendering of soft bodies is essential in medical simulations of procedures such as surgery or palpation. The most commonly used approach is to recreate the sense of touch using a specific design and control of a robotic arm. In this paper, we propose a new approach, based on soft-robotics technology. We create a tangible deformable device that allows users to “touch” soft tissues and perceive mechanical material properties, in a realistic manner. The device is able to dynamically provide user touch with different stiffness perceptions, thanks to actuators placed at the boundaries. We introduce a control algorithm, based on inverse Finite Element Analysis, which controls the actuators in order to recreate a desired stiffness that corresponds to the contact with soft tissues in the virtual environment. The approach uses antagonistic actuation principle to create a wide range of stiffness. We validate our algorithm and demonstrate the method using prototypes based on simple mechanisms.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

柔软身体的触觉渲染在外科手术或触诊等医学模拟过程中是必不可少的。最常用的方法是通过机械臂的特定设计和控制来重建触觉。在本文中,我们提出了一种基于软机器人技术的新方法。我们创造了一种有形的可变形设备,允许用户以逼真的方式“触摸”软组织并感知机械材料特性。该设备能够动态地为用户提供不同的刚度感知,这要归功于放置在边界的致动器。我们介绍了一种基于逆有限元分析的控制算法,该算法控制执行器以重新创建与虚拟环境中软组织接触对应的所需刚度。该方法利用拮抗致动原理产生大范围的刚度。我们验证了我们的算法,并使用基于简单机制的原型演示了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stiffness rendering on soft tangible devices controlled through inverse FEM simulation
Haptic rendering of soft bodies is essential in medical simulations of procedures such as surgery or palpation. The most commonly used approach is to recreate the sense of touch using a specific design and control of a robotic arm. In this paper, we propose a new approach, based on soft-robotics technology. We create a tangible deformable device that allows users to “touch” soft tissues and perceive mechanical material properties, in a realistic manner. The device is able to dynamically provide user touch with different stiffness perceptions, thanks to actuators placed at the boundaries. We introduce a control algorithm, based on inverse Finite Element Analysis, which controls the actuators in order to recreate a desired stiffness that corresponds to the contact with soft tissues in the virtual environment. The approach uses antagonistic actuation principle to create a wide range of stiffness. We validate our algorithm and demonstrate the method using prototypes based on simple mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信