视觉诊断和面部感知

S. Tobimatsu
{"title":"视觉诊断和面部感知","authors":"S. Tobimatsu","doi":"10.4018/ijcmam.2012100102","DOIUrl":null,"url":null,"abstract":"There are two major parallel pathways in humans: the parvocellular (P) and magnocellular (M) pathways. The former has excellent spatial resolution with color selectivity, while the latter shows excellent temporal resolution with high contrast sensitivity. Visual stimuli should be tailored to answer specific clinical and/or research questions. This chapter examines the neural mechanisms of face perception using event-related potentials (ERPs). Face stimuli of different spatial frequencies were used to investigate how low-spatial-frequency (LSF) and high-spatial-frequency (HSF) components of the face contribute to the identification and recognition of the face and facial expressions. The P100 component in the occipital area (Oz), the N170 in the posterior temporal region (T5/T6) and late components peaking at 270-390 ms (T5/T6) were analyzed. LSF enhanced P100, while N170 was augmented by HSF irrespective of facial expressions. This suggested that LSF is important for global processing of facial expressions, whereas HSF handles featural processing. There were significant amplitude differences between positive and negative LSF facial expressions in the early time windows of 270-310 ms. Subsequently, the amplitudes among negative HSF facial expressions differed significantly in the later time windows of 330–390 ms. Discrimination between positive and negative facial expressions precedes discrimination among different negative expressions in a sequential manner based on parallel visual channels. Interestingly, patients with schizophrenia showed decreased spatial frequency sensitivities for face processing. Taken together, the spatially filtered face images are useful for exploring face perception and recognition.","PeriodicalId":162417,"journal":{"name":"Int. J. Comput. Model. Algorithms Medicine","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Visual Gnosis and Face Perception\",\"authors\":\"S. Tobimatsu\",\"doi\":\"10.4018/ijcmam.2012100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two major parallel pathways in humans: the parvocellular (P) and magnocellular (M) pathways. The former has excellent spatial resolution with color selectivity, while the latter shows excellent temporal resolution with high contrast sensitivity. Visual stimuli should be tailored to answer specific clinical and/or research questions. This chapter examines the neural mechanisms of face perception using event-related potentials (ERPs). Face stimuli of different spatial frequencies were used to investigate how low-spatial-frequency (LSF) and high-spatial-frequency (HSF) components of the face contribute to the identification and recognition of the face and facial expressions. The P100 component in the occipital area (Oz), the N170 in the posterior temporal region (T5/T6) and late components peaking at 270-390 ms (T5/T6) were analyzed. LSF enhanced P100, while N170 was augmented by HSF irrespective of facial expressions. This suggested that LSF is important for global processing of facial expressions, whereas HSF handles featural processing. There were significant amplitude differences between positive and negative LSF facial expressions in the early time windows of 270-310 ms. Subsequently, the amplitudes among negative HSF facial expressions differed significantly in the later time windows of 330–390 ms. Discrimination between positive and negative facial expressions precedes discrimination among different negative expressions in a sequential manner based on parallel visual channels. Interestingly, patients with schizophrenia showed decreased spatial frequency sensitivities for face processing. Taken together, the spatially filtered face images are useful for exploring face perception and recognition.\",\"PeriodicalId\":162417,\"journal\":{\"name\":\"Int. J. Comput. Model. Algorithms Medicine\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Model. Algorithms Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcmam.2012100102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Model. Algorithms Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcmam.2012100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

人类有两种主要的平行途径:微细胞途径(P)和大细胞途径(M)。前者具有优异的空间分辨率和色彩选择性,后者具有优异的时间分辨率和高对比度灵敏度。视觉刺激应根据具体的临床和/或研究问题进行调整。本章探讨了使用事件相关电位(ERPs)的面部感知的神经机制。利用不同空间频率的人脸刺激,研究了人脸的低空间频率(LSF)和高空间频率(HSF)成分对人脸和面部表情的识别和识别作用。分析了枕区P100分量(Oz)、后颞区N170分量(T5/T6)和后期分量(T5/T6)在270 ~ 390 ms时达到峰值。无论面部表情如何,LSF增强P100, HSF增强N170。这表明LSF对面部表情的整体处理很重要,而HSF处理的是特征处理。在270 ~ 310 ms的早期时间窗内,LSF阳性和阴性面部表情的幅值存在显著差异。随后,在330 ~ 390 ms的时间窗内,负HSF面部表情的振幅差异显著。正面和负面面部表情的区分先于基于平行视觉通道的不同负面表情的顺序区分。有趣的是,精神分裂症患者对面部处理的空间频率敏感性降低。综上所述,空间滤波后的人脸图像有助于探索人脸感知和识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Gnosis and Face Perception
There are two major parallel pathways in humans: the parvocellular (P) and magnocellular (M) pathways. The former has excellent spatial resolution with color selectivity, while the latter shows excellent temporal resolution with high contrast sensitivity. Visual stimuli should be tailored to answer specific clinical and/or research questions. This chapter examines the neural mechanisms of face perception using event-related potentials (ERPs). Face stimuli of different spatial frequencies were used to investigate how low-spatial-frequency (LSF) and high-spatial-frequency (HSF) components of the face contribute to the identification and recognition of the face and facial expressions. The P100 component in the occipital area (Oz), the N170 in the posterior temporal region (T5/T6) and late components peaking at 270-390 ms (T5/T6) were analyzed. LSF enhanced P100, while N170 was augmented by HSF irrespective of facial expressions. This suggested that LSF is important for global processing of facial expressions, whereas HSF handles featural processing. There were significant amplitude differences between positive and negative LSF facial expressions in the early time windows of 270-310 ms. Subsequently, the amplitudes among negative HSF facial expressions differed significantly in the later time windows of 330–390 ms. Discrimination between positive and negative facial expressions precedes discrimination among different negative expressions in a sequential manner based on parallel visual channels. Interestingly, patients with schizophrenia showed decreased spatial frequency sensitivities for face processing. Taken together, the spatially filtered face images are useful for exploring face perception and recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信