{"title":"一个900兆赫CMOS lc振荡器与正交输出","authors":"A. Rofougaran, J. Rael, M. Rofougaran, A. Abidi","doi":"10.1109/ISSCC.1996.488731","DOIUrl":null,"url":null,"abstract":"The local oscillator (LO) in a wireless transceiver satisfies many exacting requirements. A variable frequency enables a phase-locked loop (PLL) to servo the LO to a stable lower frequency reference, or to correct frequency errors from measurements on the received signal. A low phase noise ensures little interference with nearby channels. A large LO voltage-swing means that it can drive a mixer with greater linearity. Finally, in single-sideband applications, the LO must supply precise quadrature phases. Low phase noise mandates use of a high-Q resonator to tune the LO, although most RF resonators are usually not integrable on ICs. Quadrature outputs are usually derived from RC phase-shift of a single-phase LO output, but this is susceptible to component inaccuracy and loss in LO amplitude. The authors present a 900 MHz oscillator circuit implemented in 1 /spl mu/m CMOS that affords modestly low-phase noise, has variable frequency with large output swing, and provides quadrature-phase outputs from two identical coupled oscillators, connected in such a way that they exert a mutual squelch when their relative phase is not in quadrature. The coupled oscillators synchronize to exactly the same frequency, in spite of mismatches in their resonant circuits.","PeriodicalId":162539,"journal":{"name":"1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"618","resultStr":"{\"title\":\"A 900 MHz CMOS LC-oscillator with quadrature outputs\",\"authors\":\"A. Rofougaran, J. Rael, M. Rofougaran, A. Abidi\",\"doi\":\"10.1109/ISSCC.1996.488731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The local oscillator (LO) in a wireless transceiver satisfies many exacting requirements. A variable frequency enables a phase-locked loop (PLL) to servo the LO to a stable lower frequency reference, or to correct frequency errors from measurements on the received signal. A low phase noise ensures little interference with nearby channels. A large LO voltage-swing means that it can drive a mixer with greater linearity. Finally, in single-sideband applications, the LO must supply precise quadrature phases. Low phase noise mandates use of a high-Q resonator to tune the LO, although most RF resonators are usually not integrable on ICs. Quadrature outputs are usually derived from RC phase-shift of a single-phase LO output, but this is susceptible to component inaccuracy and loss in LO amplitude. The authors present a 900 MHz oscillator circuit implemented in 1 /spl mu/m CMOS that affords modestly low-phase noise, has variable frequency with large output swing, and provides quadrature-phase outputs from two identical coupled oscillators, connected in such a way that they exert a mutual squelch when their relative phase is not in quadrature. The coupled oscillators synchronize to exactly the same frequency, in spite of mismatches in their resonant circuits.\",\"PeriodicalId\":162539,\"journal\":{\"name\":\"1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"618\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.1996.488731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.1996.488731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 900 MHz CMOS LC-oscillator with quadrature outputs
The local oscillator (LO) in a wireless transceiver satisfies many exacting requirements. A variable frequency enables a phase-locked loop (PLL) to servo the LO to a stable lower frequency reference, or to correct frequency errors from measurements on the received signal. A low phase noise ensures little interference with nearby channels. A large LO voltage-swing means that it can drive a mixer with greater linearity. Finally, in single-sideband applications, the LO must supply precise quadrature phases. Low phase noise mandates use of a high-Q resonator to tune the LO, although most RF resonators are usually not integrable on ICs. Quadrature outputs are usually derived from RC phase-shift of a single-phase LO output, but this is susceptible to component inaccuracy and loss in LO amplitude. The authors present a 900 MHz oscillator circuit implemented in 1 /spl mu/m CMOS that affords modestly low-phase noise, has variable frequency with large output swing, and provides quadrature-phase outputs from two identical coupled oscillators, connected in such a way that they exert a mutual squelch when their relative phase is not in quadrature. The coupled oscillators synchronize to exactly the same frequency, in spite of mismatches in their resonant circuits.