传感器系统中基于卡尔曼的定位与跟踪方案的比较

Julian Alberto Patino, J. Espinosa, R. E. Correa
{"title":"传感器系统中基于卡尔曼的定位与跟踪方案的比较","authors":"Julian Alberto Patino, J. Espinosa, R. E. Correa","doi":"10.1109/LATINCOM.2010.5640986","DOIUrl":null,"url":null,"abstract":"The challenge of target tracking is one of the most important applications of WSNs (Wireless Sensor Networks). Traditionally, Kalman filter and its derivatives are some of the most popular algorithms for solving the signal tracking problem. In a WSNs tracking application, the target motion and state update dynamics might be modelled by linear or non-linear structures depending on the specific scenario. This paper compares extended Kalman Filters with the P, PV and PVA dynamics models for object tracking in sensor networks.","PeriodicalId":308819,"journal":{"name":"2010 IEEE Latin-American Conference on Communications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparison of Kalman-based schemes for localization and tracking in sensor systems\",\"authors\":\"Julian Alberto Patino, J. Espinosa, R. E. Correa\",\"doi\":\"10.1109/LATINCOM.2010.5640986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenge of target tracking is one of the most important applications of WSNs (Wireless Sensor Networks). Traditionally, Kalman filter and its derivatives are some of the most popular algorithms for solving the signal tracking problem. In a WSNs tracking application, the target motion and state update dynamics might be modelled by linear or non-linear structures depending on the specific scenario. This paper compares extended Kalman Filters with the P, PV and PVA dynamics models for object tracking in sensor networks.\",\"PeriodicalId\":308819,\"journal\":{\"name\":\"2010 IEEE Latin-American Conference on Communications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Latin-American Conference on Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATINCOM.2010.5640986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Latin-American Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM.2010.5640986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目标跟踪问题是无线传感器网络最重要的应用之一。传统上,卡尔曼滤波及其导数是解决信号跟踪问题最常用的算法。在无线传感器网络跟踪应用中,目标运动和状态更新动态可以根据具体场景用线性或非线性结构建模。本文将扩展卡尔曼滤波器与P、PV和PVA动态模型在传感器网络目标跟踪中的应用进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of Kalman-based schemes for localization and tracking in sensor systems
The challenge of target tracking is one of the most important applications of WSNs (Wireless Sensor Networks). Traditionally, Kalman filter and its derivatives are some of the most popular algorithms for solving the signal tracking problem. In a WSNs tracking application, the target motion and state update dynamics might be modelled by linear or non-linear structures depending on the specific scenario. This paper compares extended Kalman Filters with the P, PV and PVA dynamics models for object tracking in sensor networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信