{"title":"基于逻辑状态的泄漏功率分析","authors":"S. Dhanuskodi, S. Keshavarz, Daniel E. Holcomb","doi":"10.1109/ISVLSI.2016.121","DOIUrl":null,"url":null,"abstract":"Numerous side-channel attacks on integrated circuit implementations of cryptographic systems have been demonstrated in literature. Insecure implementations can reveal secret information through data dependencies in dynamic and leakage power profiles. Side-channel resistant logic styles are effective against dynamic power analysis attacks, but are suggested to exhibit weaknesses against the less common Leakage Power Analysis (LPA) attacks. We present a novel LPA attack that uses knowledge of a circuit's internal structure to mount a stronger attack via the leakage power side-channel, and show that even dual-rail side-channel resistant logic styles are susceptible to these LPA attacks. Our proposed LPA attack can successfullyextract secret key information from S-boxes even in the presenceof large amounts of random on-chip noise, and in scenarioswhere Hamming-weight based techniques are unsuitable. We alsoevaluate the impact of process variations on our scheme, andpropose strategies for mitigating this impact.","PeriodicalId":140647,"journal":{"name":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"LLPA: Logic State Based Leakage Power Analysis\",\"authors\":\"S. Dhanuskodi, S. Keshavarz, Daniel E. Holcomb\",\"doi\":\"10.1109/ISVLSI.2016.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous side-channel attacks on integrated circuit implementations of cryptographic systems have been demonstrated in literature. Insecure implementations can reveal secret information through data dependencies in dynamic and leakage power profiles. Side-channel resistant logic styles are effective against dynamic power analysis attacks, but are suggested to exhibit weaknesses against the less common Leakage Power Analysis (LPA) attacks. We present a novel LPA attack that uses knowledge of a circuit's internal structure to mount a stronger attack via the leakage power side-channel, and show that even dual-rail side-channel resistant logic styles are susceptible to these LPA attacks. Our proposed LPA attack can successfullyextract secret key information from S-boxes even in the presenceof large amounts of random on-chip noise, and in scenarioswhere Hamming-weight based techniques are unsuitable. We alsoevaluate the impact of process variations on our scheme, andpropose strategies for mitigating this impact.\",\"PeriodicalId\":140647,\"journal\":{\"name\":\"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2016.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2016.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerous side-channel attacks on integrated circuit implementations of cryptographic systems have been demonstrated in literature. Insecure implementations can reveal secret information through data dependencies in dynamic and leakage power profiles. Side-channel resistant logic styles are effective against dynamic power analysis attacks, but are suggested to exhibit weaknesses against the less common Leakage Power Analysis (LPA) attacks. We present a novel LPA attack that uses knowledge of a circuit's internal structure to mount a stronger attack via the leakage power side-channel, and show that even dual-rail side-channel resistant logic styles are susceptible to these LPA attacks. Our proposed LPA attack can successfullyextract secret key information from S-boxes even in the presenceof large amounts of random on-chip noise, and in scenarioswhere Hamming-weight based techniques are unsuitable. We alsoevaluate the impact of process variations on our scheme, andpropose strategies for mitigating this impact.