基于支持向量机的三维微笑表情识别

Shuming Liu, Xiaopeng Chen, Di Fan, Xu Chen, Fei Meng, Qiang Huang
{"title":"基于支持向量机的三维微笑表情识别","authors":"Shuming Liu, Xiaopeng Chen, Di Fan, Xu Chen, Fei Meng, Qiang Huang","doi":"10.1109/ICMA.2016.7558813","DOIUrl":null,"url":null,"abstract":"Using Kinect acquired RGB-D image to obtain a face feature parameters and three-dimensional coordinates of the characteristic parameters, and to select the characteristic parameter Facial by Candide-3 model, and feature extraction and normalization. Smile face expression data collection through Kinect, SVM collected to smiley face data classify and output the result of recognition, and the results compared with two-dimensional image of smiling face expression recognition results. Experimental results show that three-dimensional image of smiling face expression recognition accuracy than the two-dimensional image of smiling face. This research has important significance for the research and application of facial expression recognition technology.","PeriodicalId":260197,"journal":{"name":"2016 IEEE International Conference on Mechatronics and Automation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"3D smiling facial expression recognition based on SVM\",\"authors\":\"Shuming Liu, Xiaopeng Chen, Di Fan, Xu Chen, Fei Meng, Qiang Huang\",\"doi\":\"10.1109/ICMA.2016.7558813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using Kinect acquired RGB-D image to obtain a face feature parameters and three-dimensional coordinates of the characteristic parameters, and to select the characteristic parameter Facial by Candide-3 model, and feature extraction and normalization. Smile face expression data collection through Kinect, SVM collected to smiley face data classify and output the result of recognition, and the results compared with two-dimensional image of smiling face expression recognition results. Experimental results show that three-dimensional image of smiling face expression recognition accuracy than the two-dimensional image of smiling face. This research has important significance for the research and application of facial expression recognition technology.\",\"PeriodicalId\":260197,\"journal\":{\"name\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2016.7558813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2016.7558813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用Kinect获取的RGB-D图像获得人脸特征参数和特征参数的三维坐标,并通过Candide-3模型选择人脸特征参数,并进行特征提取和归一化。通过Kinect采集笑脸表情数据,对采集到的笑脸数据进行分类并输出识别结果,并将结果与二维图像的笑脸表情识别结果进行对比。实验结果表明,三维图像的笑脸表情识别准确率高于二维图像的笑脸。该研究对面部表情识别技术的研究和应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D smiling facial expression recognition based on SVM
Using Kinect acquired RGB-D image to obtain a face feature parameters and three-dimensional coordinates of the characteristic parameters, and to select the characteristic parameter Facial by Candide-3 model, and feature extraction and normalization. Smile face expression data collection through Kinect, SVM collected to smiley face data classify and output the result of recognition, and the results compared with two-dimensional image of smiling face expression recognition results. Experimental results show that three-dimensional image of smiling face expression recognition accuracy than the two-dimensional image of smiling face. This research has important significance for the research and application of facial expression recognition technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信